Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

2016

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 59

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Stability Of Peatland Carbon To Rising Temperatures, R. M. Wilson, A. M. Hopple, M. M. Tfaily, S. D. Sebestyen, C. W. Schadt, L. Pfeifer-Meister, Cassandra Medvedeff, K. J. Mcfarlane, J. E. Kostka, M. Kolton, R. K. Kolka, L. A. Kluber, Jason K. Keller, T. P. Guilderson, N. A. Griffiths, J. P. Chanton, S. D. Brigham, P. J. Hanson Dec 2016

Stability Of Peatland Carbon To Rising Temperatures, R. M. Wilson, A. M. Hopple, M. M. Tfaily, S. D. Sebestyen, C. W. Schadt, L. Pfeifer-Meister, Cassandra Medvedeff, K. J. Mcfarlane, J. E. Kostka, M. Kolton, R. K. Kolka, L. A. Kluber, Jason K. Keller, T. P. Guilderson, N. A. Griffiths, J. P. Chanton, S. D. Brigham, P. J. Hanson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from …


Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne Dec 2016

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.


The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias Nov 2016

The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent …


The Intestinal Copper Exporter Cua-1 Is Required For Systemic Copper Homeostasis In Caenorhabditis Elegans, Haarin Chun, Anuj Kumar Sharma, Jaekwon Lee, Jefferson Chan, Shang Jia, Byung-Eun Kim Nov 2016

The Intestinal Copper Exporter Cua-1 Is Required For Systemic Copper Homeostasis In Caenorhabditis Elegans, Haarin Chun, Anuj Kumar Sharma, Jaekwon Lee, Jefferson Chan, Shang Jia, Byung-Eun Kim

Department of Biochemistry: Faculty Publications

Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson’s disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by …


Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat Oct 2016

Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat

Pharmacy Faculty Articles and Research

In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a …


Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba Sep 2016

Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and …


Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba Sep 2016

Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu …


Structural Determinants Allowing Transferase Activity In Sensitive To Freezing 2, Classified As A Family I Glycosyl Hydrolase, Rebecca Roston, Kun Wang, Leslie A. Kuhn, Christoph Benning Sep 2016

Structural Determinants Allowing Transferase Activity In Sensitive To Freezing 2, Classified As A Family I Glycosyl Hydrolase, Rebecca Roston, Kun Wang, Leslie A. Kuhn, Christoph Benning

Department of Biochemistry: Faculty Publications

Background: SENSITIVE TO FREEZING 2 (SFR2) is classified as a glycosyl hydrolase, and by using glycosyltransferase activity, it modifies membrane lipids to promote freeze tolerance.

Results: Although the active site of SFR2 is identical to hydrolases, adjacent loop regions contribute to its transferase activity.

Conclusion: Transferase activity evolved by modifications external to the core catalytic site.

Significance: Defined structure-function relationships will inform engineering of transferases and freeze tolerance.


Sending Out An Sos: Mitochondria As A Signaling Hub, Iryna Bohovych, Oleh Khalimonchuk Sep 2016

Sending Out An Sos: Mitochondria As A Signaling Hub, Iryna Bohovych, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to …


Loss Of Exogenous Androgen Dependence By Prostate Tumor Cells Is Associated With Elevated Glucuronidation Potential, Brenna M. Zimmer, Michelle E. Howell, Qin Wei, Linlin Ma, Trevor Romsdahl, Eileen G. Loughman, Jennifer E. Markham, Javier Seravalli, Joseph J. Barycki, Melanie A. Simpson Aug 2016

Loss Of Exogenous Androgen Dependence By Prostate Tumor Cells Is Associated With Elevated Glucuronidation Potential, Brenna M. Zimmer, Michelle E. Howell, Qin Wei, Linlin Ma, Trevor Romsdahl, Eileen G. Loughman, Jennifer E. Markham, Javier Seravalli, Joseph J. Barycki, Melanie A. Simpson

Department of Biochemistry: Faculty Publications

Prostate epithelial cells control the potency and availability of androgen hormones in part by inactivation and elimination. UDP-glucose dehydrogenase (UGDH) catalyzes the NAD+-dependent oxidation of UDP-glucose to UDP-glucuronate, an essential precursor for androgen inactivation by the prostate glucuronidation enzymes UGT2B15 and UGT2B17. UGDH expression is androgen stimulated, which increases the production of UDP-glucuronate, and fuels UGT-catalyzed glucuronidation. In this study, we compared the glucuronidation potential and its impact on androgen-mediated gene expression in an isogenic LNCaP model for androgen dependent versus castration resistant prostate cancer. Despite significantly lower androgen-glucuronide output, LNCaP 81 castration resistant tumor cells expressed higher …


In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne Jul 2016

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne

Articles

No abstract provided.


Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska Jul 2016

Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska

Articles

A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm …


Small-Angle X-Ray Scattering Studies Of The Oligomeric State And Quaternary Structure Of The Trifunctional Proline Utilization A (Puta) Flavoprotein From Escherichia Coli, Ranjan K. Singh, John D. Larson, Weidong Zhu, Robert P. Rambo, Greg L. Hura, Donald F. Becker, John J. Tanner Jun 2016

Small-Angle X-Ray Scattering Studies Of The Oligomeric State And Quaternary Structure Of The Trifunctional Proline Utilization A (Puta) Flavoprotein From Escherichia Coli, Ranjan K. Singh, John D. Larson, Weidong Zhu, Robert P. Rambo, Greg L. Hura, Donald F. Becker, John J. Tanner

Department of Biochemistry: Faculty Publications

Background: Trifunctional proline utilization A (PutA) proteins are multifunctional flavoproteins that catalyze two reactions and repress transcription of the put regulon.

Results: PutA from Escherichia coli is a V-shaped dimer, with the DNA-binding domain mediating dimerization.

Conclusion: Oligomeric state and quaternary structures are not conserved by PutAs.

Significance: The first three-dimensional structural information for any trifunctional PutA is reported.


Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne Jun 2016

Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne

Articles

The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly (amidoamine) dendrimers generation 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-Buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifest as increased levels of reactive oxygen species, monitored using the …


A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne Jun 2016

A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne

Articles

Understanding the correlation between the physico-chemical properties of carbonaceous nanomaterials and how these properties impact on cells and subcelluar mechanisms is critical to their risk assessment and safe translation into newly engineered devices. Here the toxicity, uptake and catabolic response of primary human macrophages to pristine graphene (PG) and pristine single walled carbon nanotubes (pSWCNT) are explored, compared and contrasted. The nanomaterial toxicity was assessed using three complementary techniques (live-dead assay, real time impedance technique and confocal microscopic analysis), all of which indicated no signs of acute cytotoxicity in response to PG or pSWCNT. Transmission electron microscopy (TEM) demonstrated that …


Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba May 2016

Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys32 of B. subtilis EF-P that is …


Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba May 2016

Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond …


Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal May 2016

Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal

University Scholar Projects

Phosphodiesterase 6 (PDE6) is a critical enzyme in the eyesight-signaling pathway. When activated, PDE6 hydrolyzes cGMP to GMP, which deactivates cGMP- gated ion channels, causing hyperpolarization of the cell and activating the sensory neurons responsible for vision. Within the PDE family, PDE6 is the only enzyme known to have an inhibitory subunit (PDE6-γ), which allows for the regulation of cGMP levels. When PDE6-γ is bound to PDE6, the enzyme is turned “off” and cannot catalyze cGMP. The α subunit of the G-protein transducin removes PDE6-γ and activates PDE6. PDE6 has proven problematic to isolate, making it difficult to study experimentally …


Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert Apr 2016

Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance …


Methods For Detecting Microbial Methane Production And Consumption By Gas Chromatography, Jared T. Aldridge, Jennie L. Catlett, Megan L. Smith, Nicole R. Buan Mar 2016

Methods For Detecting Microbial Methane Production And Consumption By Gas Chromatography, Jared T. Aldridge, Jennie L. Catlett, Megan L. Smith, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO2. Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al., 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al., 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al., 2015). Here we describe the end point and kinetic …


Stabilin-1 And Stabilin-2 Are Specific Receptors For The Cellular Internalization Of Phosphorothioate-Modified Antisense Oligonucleotides (Asos) In The Liver, Colton M. Miller, Aaron J. Donnerr, Emma E. Blank, Andrew W. Egger, Brianna M. Kellar, Michael E. Østergaard, Punit P. Seth, Edward N. Harris Feb 2016

Stabilin-1 And Stabilin-2 Are Specific Receptors For The Cellular Internalization Of Phosphorothioate-Modified Antisense Oligonucleotides (Asos) In The Liver, Colton M. Miller, Aaron J. Donnerr, Emma E. Blank, Andrew W. Egger, Brianna M. Kellar, Michael E. Østergaard, Punit P. Seth, Edward N. Harris

Department of Biochemistry: Faculty Publications

Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, KynamroTM, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform …


Chloroplast Membrane Remodeling During Freezing Stress Is Accompanied By Cytoplasmic Acidification Activating Sensitive To Freezing 2, Allison C. Barnes, Christoph Benning, Rebecca Roston Jan 2016

Chloroplast Membrane Remodeling During Freezing Stress Is Accompanied By Cytoplasmic Acidification Activating Sensitive To Freezing 2, Allison C. Barnes, Christoph Benning, Rebecca Roston

Department of Biochemistry: Faculty Publications

Low temperature is a seasonal abiotic stress which restricts native plant ranges and crop distributions. Two types of low temperature stress can be distinguished: chilling and freezing. Much work has been done on the mechanisms by which chilling is sensed, but relatively little is known about how plants sense freezing. Recently, SENSITIVE TO FREEZING 2 (SFR2) was identified as a protein which responds in a non-transcriptional manner to freezing. Here, we investigate the cellular conditions which allow SFR2 activation. Using a combination of isolated organelle, whole tissue and whole plant assays, we provide evidence that SFR2 is activated by changes …


Caloric Restriction Of Db/Db Mice Reverts Hepatic Steatosis And Body Weight With Divergent Hepatic Metabolism, Kyung Eun Kim, Youngae Jung, Soonki Min, Miso Nam, Rok Won Heo, Byeong Tak Jeon, Dae Hyun Song, Chin-Ok Yi, Eun Ae Jeong, Hwajin Kim, Jeonghyun Kim, Seon-Yong Jeong, Woori Kwak, Do Hyun Ryu, Tamas L. Horvath, Gu Seob Roh, Geum-Sook Hwang Jan 2016

Caloric Restriction Of Db/Db Mice Reverts Hepatic Steatosis And Body Weight With Divergent Hepatic Metabolism, Kyung Eun Kim, Youngae Jung, Soonki Min, Miso Nam, Rok Won Heo, Byeong Tak Jeon, Dae Hyun Song, Chin-Ok Yi, Eun Ae Jeong, Hwajin Kim, Jeonghyun Kim, Seon-Yong Jeong, Woori Kwak, Do Hyun Ryu, Tamas L. Horvath, Gu Seob Roh, Geum-Sook Hwang

Department of Biochemistry: Faculty Publications

Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of liver disease and its prevalence is a serious and growing clinical problem. Caloric restriction (CR) is commonly recommended for improvement of obesity-related diseases such as NAFLD. However, the effects of CR on hepatic metabolism remain unknown. We investigated the effects of CR on metabolic dysfunction in the liver of obese diabetic db/db mice. We found that CR of db/db mice reverted insulin resistance, hepatic steatosis, body weight and adiposity to those of db/m mice. H-NMR- and UPLC-QTOF-MS-based metabolite profiling data showed significant metabolic alterations related to lipogenesis, …


Inhibiting Hexamer Disassembly Of Human Udp-Glucose Dehydrogenase By Photoactivated Amino Acid Crosslinking, George Grady, Ashley Thelen, Jaleen Albers, Tong Ju, Jiantao Guo, Joseph J. Barycki, Melanie A. Simpson Jan 2016

Inhibiting Hexamer Disassembly Of Human Udp-Glucose Dehydrogenase By Photoactivated Amino Acid Crosslinking, George Grady, Ashley Thelen, Jaleen Albers, Tong Ju, Jiantao Guo, Joseph J. Barycki, Melanie A. Simpson

Department of Biochemistry: Faculty Publications

The enzyme UDP-glucose dehydrogenase (UGDH) catalyzes the reaction of UDP-glucose to UDP-glucuronate through two successive NAD+-dependent oxidation steps. Human UGDH apoprotein purifies as a mixture of dimeric and hexameric species. Addition of substrate and cofactor stabilizes the oligomeric state to primarily the hexameric form. To determine if the dynamic conformations of hUGDH are required for catalytic activity, we used site-specific unnatural amino acid incorporation to facilitate crosslinking of monomeric subunits into predominantly obligate oligomeric species. Optimal crosslinking was achieved by encoding p-benzoyl-L-phenylalanine at position 458, normally a glutamine located within the dimer-dimer interface, and exposing to long wavelength …


Cadmium And Secondary Structure-Dependent Function Of A Degron In The Pca1p Cadmium Exporter, Nathan Smith, Wenzhong Wel, Miaoyun Zhao, Xiaojuan Quin, Javier Seravalli, Heejeong Kim, Jaekwon Lee Jan 2016

Cadmium And Secondary Structure-Dependent Function Of A Degron In The Pca1p Cadmium Exporter, Nathan Smith, Wenzhong Wel, Miaoyun Zhao, Xiaojuan Quin, Javier Seravalli, Heejeong Kim, Jaekwon Lee

Department of Biochemistry: Faculty Publications

Protein turnover is a critical cellular process regulating biochemical pathways and destroying terminally misfolded or damaged proteins. Pca1p, a cadmium exporter in the yeast Saccharomyces cerevisiae, is rapidly degraded by the endoplasmic reticulum-associated degradation (ERAD) system via a cis-acting degron that exists at the 250–350 amino acid region of Pca1p and is transferable to other proteins to serve as a degradation signal. Cadmium stabilizes Pca1p in a manner dependent on the degron. This suggested that cadmium-mediated masking of the degron impedes its interaction with the molecular factors involved in the ERAD. The characteristics and mechanisms of action of the …


Atomic Resolution Experimental Phase Information Reveals Extensive Disorder And Bound 2-Methyl-2,4-Pentanediol In Ca2+-Calmodulin, Jiusheng Lin, Henry Van Den Bedem, Axel T. Brunger, Mark A. Wilson Jan 2016

Atomic Resolution Experimental Phase Information Reveals Extensive Disorder And Bound 2-Methyl-2,4-Pentanediol In Ca2+-Calmodulin, Jiusheng Lin, Henry Van Den Bedem, Axel T. Brunger, Mark A. Wilson

Department of Biochemistry: Faculty Publications

Calmodulin (CaM) is the primary calcium signaling protein in eukaryotes and has been extensively studied using various biophysical techniques. Prior crystal structures have noted the presence of ambiguous electron density in both hydrophobic binding pockets of Ca2+-CaM, but no assignment of these features has been made. In addition, Ca2+-CaM samples many conformational substates in the crystal and accurately modeling the full range of this functionally important disorder is challenging. In order to characterize these features in a minimally biased manner, a 1.0 A resolution single-wavelength anomalous diffraction data set was measured for selenomethionine-substituted Ca2+-CaM. …


Mutual Information Upper Bound Of Molecular Communication Based On Cell Metabolism, Massimiliano Pierobon, Zahmeeth Sakkaff, Jennie L. Catlett, Nicole R. Buan Jan 2016

Mutual Information Upper Bound Of Molecular Communication Based On Cell Metabolism, Massimiliano Pierobon, Zahmeeth Sakkaff, Jennie L. Catlett, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in synthetic biology stands in the development of reliable techniques to control the engineered cells from the external environment. In this …


Novel Acyltranserases And Methods Of Using, Edgar B. Cahoon, Umidjon Iskandarov, Hae Jin Kim, Jillian Collins-Silva Jan 2016

Novel Acyltranserases And Methods Of Using, Edgar B. Cahoon, Umidjon Iskandarov, Hae Jin Kim, Jillian Collins-Silva

Department of Biochemistry: Faculty Publications

Provided herein are novel acyltransferases and methods of using Such novel acyltransferases in making medium-chain fatty acids.


An Evaluation Of New And Established Methods To Determine T-Dna Copy Number And Homozygosity In Transgenic Plants, Katarzyna Glowacka, Johannes Kromdijk, Lauriebeth Leonelli, Krishna K. Niyogi, Tom E. Clemente, Stephen P. Long Jan 2016

An Evaluation Of New And Established Methods To Determine T-Dna Copy Number And Homozygosity In Transgenic Plants, Katarzyna Glowacka, Johannes Kromdijk, Lauriebeth Leonelli, Krishna K. Niyogi, Tom E. Clemente, Stephen P. Long

Department of Biochemistry: Faculty Publications

Stable transformation of plants is a powerful tool for hypothesis testing.Arapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations.Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher …