Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee Apr 2022

Computational Investigations Into Binding Dynamics Of Tau Protein Antibodies: Using Machine Learning And Biophysical Models To Build A Better Reality, Katherine Lee

University Scholar Projects

Misregulation of post-translational modifications of microtubule-associated protein tau is implicated in several neurodegenerative diseases including Alzheimer’s disease. Hyperphosphorylation of tau promotes aggregation of tau monomers into filaments which are common in tau-associated pathologies. Therefore, tau is a promising target for therapeutics and diagnostics. Recently, high-affinity, high-specificity single-chain variable fragment (scFv) antibodies against pThr-231 tau were generated and the most promising variant (scFv 3.24) displayed 20-fold increased binding affinity to pThr-231 tau compared to the wild-type. The scFv 3.24 variant contained five point mutations, and intriguingly none were in the tau binding site. The increased affinity was hypothesized to occur due …


Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal May 2016

Computational Investigations Into The Molecular Underpinnings Of Eyesight Signaling Pathways, Shaan Kamal

University Scholar Projects

Phosphodiesterase 6 (PDE6) is a critical enzyme in the eyesight-signaling pathway. When activated, PDE6 hydrolyzes cGMP to GMP, which deactivates cGMP- gated ion channels, causing hyperpolarization of the cell and activating the sensory neurons responsible for vision. Within the PDE family, PDE6 is the only enzyme known to have an inhibitory subunit (PDE6-γ), which allows for the regulation of cGMP levels. When PDE6-γ is bound to PDE6, the enzyme is turned “off” and cannot catalyze cGMP. The α subunit of the G-protein transducin removes PDE6-γ and activates PDE6. PDE6 has proven problematic to isolate, making it difficult to study experimentally …


Modeling Human Immune Response To The Lyme Disease-Causing Bacteria, Yevhen Rutovytskyy May 2011

Modeling Human Immune Response To The Lyme Disease-Causing Bacteria, Yevhen Rutovytskyy

Honors Scholar Theses

The purpose of this project is to develop and analyze a mathematical model

for the pathogen-host interaction that occurs during early Lyme disease.

Based on the known biophysics of motility of Borrelia burgdorferi and a

simple model for the immune response, a PDE model was created which tracks

the time evolution of the concentrations of bacteria and activated immune

cells in the dermis. We assume that a tick bite inoculates a highly

localized population of bacteria into the dermis. These bacteria can

multiply and migrate. The diffusive nature of the migration is assumed and

modeled using the heat equation. Bacteria …