Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 15 of 15

Full-Text Articles in Other Biochemistry, Biophysics, and Structural Biology

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens Mar 2021

Cown Sustains Nitrogenase Turnover In The Presence Of The Inhibitor Carbon Monoxide, Michael S. Medina, Kevin O. Bretzing, Richard A. Aviles, Kiersten M. Chong, Alejandro Espinoza, Chloe Nicole G. Garcia, Benjamin B. Katz, Ruchita N. Kharwa, Andrea Hernandez, Justin L. Lee, Terrence M. Lee, Christine Lo Verde, Max W. Strul, Emily Y. Wong, Cedric P. Owens

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, …


Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté Nov 2018

Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté

Science and Technology Department Faculty Journal Articles

Past changes in the atmospheric concentration of carbon dioxide (PCO2) have had a major impact on earth system dynamics; yet, reconstructing secular trends of past PCO2 remains a prevalent challenge in paleoclimate studies. The current long-term PCO2reconstructions rely largely on the compilation of many different proxies, often with discrepancies among proxies, particularly for periods older than 100 million years (Ma). Here, we reconstructed Phanerozoic PCO2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as PCO2 increases. This concept has been widely applied to alkenones, but here, we …


Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka Jul 2017

Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has …


Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre Jun 2017

Industrial Grade 2d Molybdenum Disulphide (Mos2): An In-Vitro Exploration Of The Impact On Cellular Uptake, Cytotoxicity, And Inflammation, Caroline Moore, Hugh Byrne, Jonathan N. Coleman, Yuri Volkov, Jennifer Mcintyre

Articles

The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than …


Enabling Method To Design Versatile Biomaterial Systems From Colloidal Building Blocks, Shalini Saxena, L. Andrew Lyon Jan 2016

Enabling Method To Design Versatile Biomaterial Systems From Colloidal Building Blocks, Shalini Saxena, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Development of materials with fine spatial control over topographical, mechanical, or chemical features has been investigated for a variety of applications. Here we present a method to fabricate an array of polyelectrolyte constructs including two-dimensionally and three-dimensionally patterned assemblies using both compressible and incompressible colloidal building blocks. This method eliminates prior constraints associated with specific chemistries, and can be used to develop modular, multi-component, patterned assemblies. In particular, development of constructs were investigated using microgels, which are colloidally stable hydrogel microparticles, polystyrene (PS) beads, and PS-microgel core-shell building blocks in conjunction with the polycation poly(ethyleneimine) (PEI). The topography, mechanical properties, …


A Multilaboratory Comparison Of Calibration Accuracy And The Performance Of External References In Analytical Ultracentrifugation, Huaying Zhao, Rodolfo Ghirlando, Carlos Alfonso, Fumio Arisaka, Ilan Attali, David L. Bain, Et Al. ..., Donald F. Becker, Peter Schuck May 2015

A Multilaboratory Comparison Of Calibration Accuracy And The Performance Of External References In Analytical Ultracentrifugation, Huaying Zhao, Rodolfo Ghirlando, Carlos Alfonso, Fumio Arisaka, Ilan Attali, David L. Bain, Et Al. ..., Donald F. Becker, Peter Schuck

Department of Biochemistry: Faculty Publications

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy …


Reactions With Platinum (Ll) Complexes And Selenium-Containing Amino Acids, Stephanie Robey Dec 2011

Reactions With Platinum (Ll) Complexes And Selenium-Containing Amino Acids, Stephanie Robey

Mahurin Honors College Capstone Experience/Thesis Projects

We have reacted [Pt(Me4en)(D2O)2]2+ [Me4En=N,N,N’N’-tetramethylethylenediamine] with Selenomethionine (SeMet), Methionine (Met), and Methylselenocysteine (MeSeCys). When MeSeCys was reacted with [Pt(Me4en)(D2O)2]2+, we observed both stereoisomers of Se,N chelates, as well as [Pt(Me4en)(MeSeCys)Cl]+ from ­1­H NMR Spectroscopy; the latter formed due to the presence of Cl- in the solution. Both isomers of the chelate seemed to form proportionally to one another, not favoring a specific stereoisomer. Eventually the [Pt(Me4en)(MeSeCys)Cl]+ products became Se,N chelates. We incubated SeMet with …


Pharmacological Chaperoning In Fabry Disease, Jerome Rogich Jan 2011

Pharmacological Chaperoning In Fabry Disease, Jerome Rogich

Masters Theses 1911 - February 2014

Fabry Disease is an X-­‐linked lysosomal storage disorder characterized by a variety of symptoms including hypohydrosis, seizures, cardiac abnormalities, skin lesions, and chronic pain. These symptoms stem from a lack of functional endogenous α-­‐ Galactosidase A (α-­GAL), which leads to an accrual of its natural substrate. The severity of the disease symptoms can be directly correlated with the amount of residual enzyme activity. It has been shown that an imino sugar, 1-deoxygalactonojirimycin (DGJ), can increase enzymatic activity and clear excess substrate. This pH-­‐dependent chaperoning phenomenon is believed to arise from the presence of aspartic acid 170 in the active site. …


Synthesis, Kinetic And Photocatalytic Studies Of Porphyrin-Ruthenium-Oxo Complexes, Yan Huang Aug 2010

Synthesis, Kinetic And Photocatalytic Studies Of Porphyrin-Ruthenium-Oxo Complexes, Yan Huang

Masters Theses & Specialist Projects

Macrocyclic ligand-complexed transition metal-oxo intermediates are the active oxidizing species in a variety of important biological and catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in Nature, namely the cytochrome P450 enzymes. Ruthenium porphyrin complexes have been the center of the research and have successfully been utilized, as catalysts, in major oxidation reactions such as the hydroxylation of alkanes. This study focuses on kinetic and photocatalytic studies of oxidation reactions with wellcharacterized high-valent ruthenium-oxo porphyrin complexes.
The trans-dioxoruthenium(VI) porphyrins have been among the best characterized metal-oxo intermediates and their involvement as …


Shape Imprinting Due To Variable Disulfide Bonds In Polyacrylamide Gels, Andrew B. Greytak, Alexander Y. Grosberg, Toyoichi Tanaka Jun 2001

Shape Imprinting Due To Variable Disulfide Bonds In Polyacrylamide Gels, Andrew B. Greytak, Alexander Y. Grosberg, Toyoichi Tanaka

Faculty Publications

Through the use of variable disulfide crosslinkers, we have created polyacrylamide gels whose shape can be altered after polymerization. N,N'-bisacryloylcystamine is incorporated as a crosslinker, along with a smaller amount of a permanent crosslinker. After polymerization, the disulfide bonds are cleaved into thiols through reduction. By reoxidizing the thiols with the gel held in a new macroscopic shape, a new set of disulfide bonds is formed, and the gel is forced to adopt the new shape. Retension of the new shape improves with greater distortion from the original shape, as well as with increased concentration of variable …