Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish Apr 2023

The Role Of Cerium(Iii) In Bacterial Growth And The Microbial Transformation Of Aromatic Hydrocarbons, Shruti Sathish

Honors Theses

Biofilms are communities of surface-attached bacterial cells encased in an exopolymeric matrix. In this state, they are more resistant to antimicrobial treatment and can have adverse effects in medical, agricultural, and industrial settings. Whereas, as biocatalysts, biofilms from nonpathogenic bacteria enhance their performance and stability in catalysis. Unfortunately, there are several challenges when using bacteria in organic transformations due to their complex cellular chemistry. Trivalent lanthanide metals were discovered to serve regulatory roles in some bacterial catalytic processes, including those of Pseudomonas putida KT2440 (P. putida), a non-infectious Gram-negative bacterium. The main goal of our research is to use cerium(III) …


Structure/Function Analysis Of Fega And Fhua In Bradyrhizobium Sp., Alexander James Herd Jan 2019

Structure/Function Analysis Of Fega And Fhua In Bradyrhizobium Sp., Alexander James Herd

Senior Honors Projects, 2010-2019

Bradyrhizobium japonicum is a Gram-negative soil bacterium commonly known for its agriculturally significant mutualistic relationship with soybean. In this symbiosis, the bacteria and plant undergo complex molecular signaling characterized by sent and received signals resulting in the formation of infection threads and root nodules. This research aimed to compare two related bacterial outer membrane proteins, FegA and FhuA, associated with the molecular signaling between the bacteria and plant. Previous work has led to the hypothesis that the N-terminal domain (NTD) of FegA in B. japonicum is needed for a functional symbiosis to occur. Recombinant bacterial strains expressing altered FegA proteins …


The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson Oct 2013

Pathoscope: Species Identification And Strain Attribution With Unassembled Sequencing Data., Owen E Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L Clement, Eduardo Castro-Nallar, Quinn Snell, G Bruce Schaalje, Mark J Clement, Keith A Crandall, W Evan Johnson

Computational Biology Institute

Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence …