Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2023

Dissertations

Discipline
Institution
Keyword

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Novel Photobase Generators For Photoinduced Polymerization And Ph Regulation, Shupei Yu Dec 2023

Novel Photobase Generators For Photoinduced Polymerization And Ph Regulation, Shupei Yu

Dissertations

Photochemistry encompasses the investigation of chemical processes instigated by light absorption. As important branches of photochemistry, photosensitive and optical materials have attracted extensive research interests in both academia and industry. Photosensitive and optical materials are composed of polymers / small molecules with photo-responsive properties. These materials not only can absorb light in the desired energy spectrum, but also exhibit chemical / physical reactions, which can be applied to different fields such as photoredox, photo-heat, phototherapy, solar cells, diodes, etc. Among them, photobase generators (PBGs) are a series of photosensitive compounds, which absorb the incident light, then release the basic species …


Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley Dec 2023

Biophysical Factors Affecting Habitat Suitability For Crassostrea Virginica, Jason D. Tilley

Dissertations

Oyster reefs provide a variety of important ecosystem services. However, the mortality rate of eastern oyster, Crassostrea virginica, the dominant species that produces oyster reefs in the northern Gulf of Mexico, is increasing at an alarming rate due to a variety of abiotic and biological factors. I examined how biophysical factors, including the less-studied fatty acid profiles of the suspended particulate matter on which oysters feed, influenced morphometric condition of C. virginica.

I sampled suspended particulate matter (SPM) and oysters in-situ in the western Mississippi Sound, which historically supported the majority of oyster production in Mississippi waters. Sampling …


Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali Aug 2023

Molecular Mechanisms Of Amyloid-Like Fibril Formation, Sharareh Jalali

Dissertations

Proteins play a critical role in living systems by performing most of the functions inside cells. The latter is determined by the protein's three-dimensional structure when it is folded in its native state. However, under pathological conditions, proteins can misfold and aggregate, accounting for the formation of highly ordered insoluble assemblies known as amyloid fibrils. These assemblies are associated with diseases like Parkinson's and Alzheimer's. Strong evidence suggests that three mechanisms are critical for forming amyloid fibrils. These mechanisms are the nucleation of amyloid fibrils in solution (primary nucleation) as well as on the surface of existing fibrils (secondary nucleation) …


Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Continuum Modeling Of Active Nematics Via Data-Driven Equation Discovery, Connor Robertson May 2023

Continuum Modeling Of Active Nematics Via Data-Driven Equation Discovery, Connor Robertson

Dissertations

Data-driven modeling seeks to extract a parsimonious model for a physical system directly from measurement data. One of the most interpretable of these methods is Sparse Identification of Nonlinear Dynamics (SINDy), which selects a relatively sparse linear combination of model terms from a large set of (possibly nonlinear) candidates via optimization. This technique has shown promise for synthetic data generated by numerical simulations but the application of the techniques to real data is less developed. This dissertation applies SINDy to video data from a bio-inspired system of mictrotubule-motor protein assemblies, an example of nonequilibrium dynamics that has posed a significant …


Characterization And Genomic Analysis Of Two Escherichia Coli O157:H7 Bacteriophages Isolated From Pigeons, Mohamad I. Alolama Apr 2023

Characterization And Genomic Analysis Of Two Escherichia Coli O157:H7 Bacteriophages Isolated From Pigeons, Mohamad I. Alolama

Dissertations

Enterohemorrhagic Escherichia coli, also known as EHEC, is a subset of Shiga toxin-producing E. coli (STEC), and it has recently been identified as one of the principal foodborne pathogens. E. coli O157:H7 is the most important serotype of STEC for its role in causing foodborne illnesses. E. coli O157:H7 could cause various gastroenteritis symptoms such as diarrhea, hemolytic uremic syndrome, hemorrhagic colitis, and thrombotic thrombocytopenic purpura and may cause death. Elimination of E. coli O157:H7 during food processing and storage is a possible solution. Bacteriophages have a significant impact on bacterial populations in nature due to their ability to …


Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover Feb 2023

Probing Amyloid-Beta Protein Structure And Dynamics With A Selective Antibody, Shikha Grover

Dissertations

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The AD brain is characterized by significant neuronal loss and accumulation of insoluble fibrillar amyloid-β protein (Aβ) plaques and tau protein neurofibrillary tangles in the brain. However, over the last decade, many studies have shown that the neurodegenerative effect of Aβ may in fact be caused by various soluble oligomeric forms as opposed to the insoluble fibrils. Furthermore, the data suggest that a pre-fibrillar aggregated form, termed protofibrils, mediates direct neurotoxicity, and triggers a robust neuroinflammatory response.

Antibodies targeting the various conformation of Aβ are important therapeutic agents to prevent the progression …


Role Of Micrornas In Intestinal Inflammation And Barrier Homeostasis After Alcohol And Burn Injury, Caroline J. Herrnreiter Jan 2023

Role Of Micrornas In Intestinal Inflammation And Barrier Homeostasis After Alcohol And Burn Injury, Caroline J. Herrnreiter

Dissertations

MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression. Within the intestinal epithelium, miRNAs play a critical role in gut homeostasis and aberrant miRNA expression has been implicated in various disorders associated with intestinal inflammation and barrier disruption. In this study, we sought to profile changes in intestinal epithelial cell miRNA expression after alcohol and burn injury and elucidate their impact on inflammation and barrier integrity. In a more targeted approach, we began by focusing on anti-inflammatory miRNAs that, when downregulated, could exacerbate inflammation and result in intestinal barrier disruption. Using a mouse model of acute ethanol intoxication …


Dynamic Control Of The Cardiac Calcium Pump, Sean Robert Cleary Jan 2023

Dynamic Control Of The Cardiac Calcium Pump, Sean Robert Cleary

Dissertations

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ into the endoplasmic reticulum of cells to establish a reservoir for Ca2+ signaling. In the heart, the activity of this transporter is tightly controlled via direct interactions with two competing regulatory micropeptides: phospholamban (PLB) and dwarf open reading frame (DWORF). PLB inhibits SERCA, while DWORF activates SERCA. These competing interactions determine cardiac performance by modulating the Ca2+ signals that drive the contraction/relaxation cycle. Previous studies indicated these SERCA-micropeptide interactions are Ca2+-sensitive; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. Here, FRET-microscopy demonstrated that this …