Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman Aug 2018

Structure And Thermodynamics Of Polyglutamine Peptides And Amyloid Fibrils Via Metadynamics And Molecular Dynamics Simulations, Riley Workman

Electronic Theses and Dissertations

Aggregation of polyglutamine (polyQ)-rich polypeptides in neurons is a marker for nine neurodegenerative diseases. The molecular process responsible for the formation of polyQ fibrils is not well understood and represents a growing area of study. To enable development of treatments that could interfere with aggregation of polyQ peptides, it is crucial to understand the molecular mechanisms by which polyQ peptides aggregate into fibrils. Many experimental techniques have been employed to probe polyQ aggregation, however, observations from these studies have not lead to a unified understanding of the properties of these systems, instead yielding competing, fragmented theories of polyQ aggregation. This …


Structure-Function Relationships In Hexacoordinate Heme Proteins: Mechanism Of Cytoglobin Interactions With Exogenous Ligands, Antonija Tangar Jun 2018

Structure-Function Relationships In Hexacoordinate Heme Proteins: Mechanism Of Cytoglobin Interactions With Exogenous Ligands, Antonija Tangar

FIU Electronic Theses and Dissertations

Cytoglobin (Cygb) and neuroglobin (Ngb) are among the newest members of vertebrate globin family characterized by a classical 3-over-3 α-helical fold and a heme prosthetic group capable of reversibly binding small ligands such as O2, CO and NO. The physiological functions of Cygb and Ngb remain to be determined; however, current data suggest that both proteins have a significant role in cytoprotection in hypoxic and genotoxic conditions. Cytoglobin and Ngb are distinct from their better-known counterparts, hemoglobin (Hb) and myoglobin (Mb), in several structural features. First, in the absence of an external ligand, the sixth coordination site of …


Hard-Sphere-Like Dynamics In Highly Concentrated Alpha-Crystallin Suspensions, Preeti Vodnala, Laurence Lurio, Michael C. Vega, Elizabeth Gaillard Feb 2018

Hard-Sphere-Like Dynamics In Highly Concentrated Alpha-Crystallin Suspensions, Preeti Vodnala, Laurence Lurio, Michael C. Vega, Elizabeth Gaillard

Faculty Peer-Reviewed Publications

The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.


Understanding Carbohydrate Recognition Mechanisms In Non-Catalytic Proteins Through Molecular Simulations, Abhishek A. Kognole Jan 2018

Understanding Carbohydrate Recognition Mechanisms In Non-Catalytic Proteins Through Molecular Simulations, Abhishek A. Kognole

Theses and Dissertations--Chemical and Materials Engineering

Non-catalytic protein-carbohydrate interactions are an essential element of various biological events. This dissertation presents the work on understanding carbohydrate recognition mechanisms and their physical significance in two groups of non-catalytic proteins, also called lectins, which play key roles in major applications such as cellulosic biofuel production and drug delivery pathways. A computational approach using molecular modeling, molecular dynamic simulations and free energy calculations was used to study molecular-level protein-carbohydrate and protein-protein interactions. Various microorganisms like bacteria and fungi secret multi-modular enzymes to deconstruct cellulosic biomass into fermentable sugars. The carbohydrate binding modules (CBM) are non-catalytic domains of such enzymes that …