Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Biotechnology

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 55

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

One-Step Hot Formamide Extraction Of Rna From Saccharomyces Cerevisiae, Daniel Shedlovskiy, Natalia Shcherbik, Dimitri G Pestov Dec 2017

One-Step Hot Formamide Extraction Of Rna From Saccharomyces Cerevisiae, Daniel Shedlovskiy, Natalia Shcherbik, Dimitri G Pestov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Current methods for isolating RNA from budding yeast require lengthy and laborious steps such as freezing and heating with phenol, homogenization with glass beads, or enzymatic digestion of the cell wall. Here, extraction with a solution of formamide and EDTA was adapted to isolate RNA from whole yeast cells through a rapid and easily scalable procedure that does not require mechanical cell lysis, phenol, or enzymes. RNA extracted with formamide-EDTA can be directly loaded on gels for electrophoretic analysis without alcohol precipitation. A simplified protocol for downstream DNase treatment and reverse transcription reaction is also included. The formamide-EDTA extraction of …


Bioinformatic And Experimental Approaches For Deeper Metaproteomic Characterization Of Complex Environmental Samples, Ramsunder Mahadevan Iyer Dec 2017

Bioinformatic And Experimental Approaches For Deeper Metaproteomic Characterization Of Complex Environmental Samples, Ramsunder Mahadevan Iyer

Doctoral Dissertations

The coupling of high performance multi-dimensional liquid chromatography and tandem mass spectrometry for characterization of microbial proteins from complex environmental samples has paved the way for a new era in scientific discovery. The field of metaproteomics, which is the study of protein suite of all the organisms in a biological system, has taken a tremendous leap with the introduction of high-throughput proteomics. However, with corresponding increase in sample complexity, novel challenges have been raised with respect to efficient peptide separation via chromatography and bioinformatic analysis of the resulting high throughput data. In this dissertation, various aspects of metaproteomic characterization, including …


Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie Nov 2017

Pore Forming Protein Assembly And The Use In Nanopore Sensing: A Study On E. Coli Proteins Clya And Ompg, Monifa Fahie

Doctoral Dissertations

Pore forming proteins are typically the proteins that form channels in membranes. They have several roles ranging from molecule transport to triggering the death of a cell. This work focuses on two E. coli pore forming proteins that have vastly differing roles in nature. Outer membrane protein G (OmpG) is an innocuous β-barrel porin while Cytolysin A (ClyA) is an α-helical pore forming toxin. For OmpG we probed its potential to be a nanopore sensor for protein detection and quantification. A small high affinity ligand, biotin, was covalently attached to loop 6 of OmpG and used to capture biotin-binding proteins. …


High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao Nov 2017

High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao

Medical Diagnostics & Translational Sciences Faculty Publications

We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG) n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG) n tract length at the end of each …


Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel Nov 2017

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel

Department of Biochemistry: Faculty Publications

Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.

Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.

Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation …


Ydj1 Governs Fungal Morphogenesis And Stress Response, And Facilitates Mitochondrial Protein Import Via Mas1 And Mas2, Jinglin L. Xie, Iryna Bohovych, Erin O.Y. Wong, Jean-Philippe Lambert, Anne-Claude Gingras, Oleh Khalimonchuk, Leah E. Cowen, Michelle D. Leach Oct 2017

Ydj1 Governs Fungal Morphogenesis And Stress Response, And Facilitates Mitochondrial Protein Import Via Mas1 And Mas2, Jinglin L. Xie, Iryna Bohovych, Erin O.Y. Wong, Jean-Philippe Lambert, Anne-Claude Gingras, Oleh Khalimonchuk, Leah E. Cowen, Michelle D. Leach

Department of Biochemistry: Faculty Publications

Mitochondria underpin metabolism, bioenergetics, signalling, development and cell death in eukaryotes. Most of the ~1,000 yeast mitochondrial proteins are encoded in the nucleus and synthesised as precursors in the cytosol, with mitochondrial import facilitated by molecular chaperones. Here, we focus on the Hsp40 chaperone Ydj1 in the fungal pathogen Candida albicans, finding that it is localised to both the cytosol and outer mitochondrial membrane, and is required for cellular stress responses and for filamentation, a key virulence trait. Mapping the Ydj1 protein interaction network highlighted connections with co-chaperones and regulators of filamentation. Furthermore, the mitochondrial processing peptidases Mas1 and …


Identification Of Potential Tissue-Specific Cancer Biomarkers And Development Of Cancer Versus Normal Genomic Classifiers, Akram Mohammed, Greyson Biegert, Jiri Adamec, Tomáš Helikar Sep 2017

Identification Of Potential Tissue-Specific Cancer Biomarkers And Development Of Cancer Versus Normal Genomic Classifiers, Akram Mohammed, Greyson Biegert, Jiri Adamec, Tomáš Helikar

Department of Biochemistry: Faculty Publications

Machine learning techniques for cancer prediction and biomarker discovery can hasten cancer detection and significantly improve prognosis. Recent “OMICS” studies which include a variety of cancer and normal tissue samples along with machine learning approaches have the potential to further accelerate such discovery. To demonstrate this potential, 2,175 gene expression samples from nine tissue types were obtained to identify gene sets whose expression is characteristic of each cancer class. Using random forests classification and ten-fold cross-validation, we developed nine single-tissue classifiers, two multi-tissue cancer-versus-normal classifiers, and one multi-tissue normal classifier. Given a sample of a specified tissue type, the single-tissue …


Organ-Specific Regulation Of Atp7a Abundance Is Coordinated With Systemic Copper Homeostasis, Haarin Chun, Tracy Catterson, Heejeong Kim, Jaekwon Lee, Byung-Eun Kim Sep 2017

Organ-Specific Regulation Of Atp7a Abundance Is Coordinated With Systemic Copper Homeostasis, Haarin Chun, Tracy Catterson, Heejeong Kim, Jaekwon Lee, Byung-Eun Kim

Department of Biochemistry: Faculty Publications

Copper (Cu) is an essential cofactor for various enzymatic activities including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Consequently, Cu dysregulation is associated with fatal neonatal disease, liver and cardiac dysfunction, and anemia. While the Cu transporter ATP7A plays a major role in both intestinal Cu mobilization to the periphery and prevention of Cu over-accumulation, it is unclear how regulation of ATP7A contributes to Cu homeostasis in response to systemic Cu fluctuation. Here we show, using Cu-deficient mouse models, that steadystate levels of ATP7A are lower in peripheral tissues (including the heart, spleen, and liver) under Cu deficiency …


Characterization Of Different Molecular Markers For Identification Of Salmonella Enterica Serovar Typhi In Pakistani Population, Faizan Muttiullah, Fida Muhammad Khan, Fakhar-I- Abbas, Sabiha Shamim Sep 2017

Characterization Of Different Molecular Markers For Identification Of Salmonella Enterica Serovar Typhi In Pakistani Population, Faizan Muttiullah, Fida Muhammad Khan, Fakhar-I- Abbas, Sabiha Shamim

Journal of Bioresource Management

Typhoid is caused by Salmonella enterica serovar Typhi that is usually diagnosed by using serologic and immuno-chromatographic techniques in developing counties including Pakistan, which is thought to be an unreliable diagnostic method. For accurate diagnosis we used molecular techniques to amplify 204 bp StyR-36 and 498 bp flagellin gene for the identification of Salmonella enterica serovar Typhi. This study was done on 58 individuals diagnosed positive of typhoid via serologic tests and 50 healthy individuals as a control group. Success rate of amplification for flagellin gene was 77.58% while that for StyR-36 gene was 68.97% showing that flagellin gene primer …


Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes Sep 2017

Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes

Dissertations, Theses, and Capstone Projects

Fabry disease is an X-linked lysosomal storage disorder caused by the deficiency of the enzyme, α-galactosidase A, which results in the accumulation of the lipid substrate. This accumulation results in obstruction of blood flow in patients and early demise at approximately 40-60 years of age. There is currently only one FDA approved treatment (Fabrazyme) classified as an enzyme replacement therapy. However, approximately 88% of patients experience a severe immune response that, rarely, can be fatal and is a huge cost burden at average $250,000 a year per patient. The structure of α-galactosidase A has been previously determined to be a …


Deciphering Sulfur Amino Acid Metabolism In Developing Seeds Of Common Bean, Jaya Joshi Aug 2017

Deciphering Sulfur Amino Acid Metabolism In Developing Seeds Of Common Bean, Jaya Joshi

Electronic Thesis and Dissertation Repository

With increasing food insecurity in the populated world, the number of people affected by chronic undernourishment is also increasing. Alone, protein energy malnutrition is linked to 6 million deaths annually. Despite being a good source of protein and dietary fibre, the quality of bean protein is limited because of sub optimal levels of essential sulfur amino acids: methionine and cysteine. Levels of cysteine and methionine in developing seeds have an inverse relationship with the non-protein sulfur amino acid S-methyl-cysteine (S-methylCys) and dipeptide g-glutamyl-S-methyl-cysteine (g-Glu-S-methylCys).

One of the strategies to improve protein quality in …


Metalloproteases Of The Inner Mitochondrial Membrane, Roman M. Levytskyy, Iryna Bohovych, Oleh Khalimonchuk Aug 2017

Metalloproteases Of The Inner Mitochondrial Membrane, Roman M. Levytskyy, Iryna Bohovych, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

The inner mitochondrial membrane (IM) is among most protein-rich cellular compartments. The metastable IM sub-proteome where the concentration of proteins is approaching oversaturation creates a challenging protein folding environment with high probability for protein malfunction or aggregation. Failure to maintain protein homeostasis in such a setting can impair functional integrity of the mitochondria and drive clinical manifestations. The IM is equipped with a series of highly conserved, proteolytic complexes dedicated to the maintenance of normal protein homeostasis within this mitochondrial sub-compartment. Particularly important is a group of membrane-anchored metallopeptidases commonly known as m-AAA and i-AAA proteases, and the ATP-independent Oma1 …


The Role Of Interactions Of Long Non-Coding Rnas And Heterogeneous Nuclear Ribonucleoproteins In Regulating Cellular Functions, Xinghui Sun, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran Aug 2017

The Role Of Interactions Of Long Non-Coding Rnas And Heterogeneous Nuclear Ribonucleoproteins In Regulating Cellular Functions, Xinghui Sun, Mohamed Sham Shihabudeen Haider Ali, Matthew Moran

Department of Biochemistry: Faculty Publications

Long non-coding RNAs (lncRNAs) are emerging as critical regulators of various biological processes and human diseases. The mechanisms of action involve their interactions with proteins, RNA and genomic DNA. Most lncRNAs display strong nuclear localization. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding proteins that are important for multiple aspects of nucleic acid metabolism. hnRNPs are also predominantly expressed in the nucleus. This review discusses the interactions of lncRNAs and hnRNPs in regulating gene expression at transcriptional and post-transcriptional levels or by changing genomic structure, highlighting their involvements in glucose and lipid metabolism, immune response, DNA damage response, …


Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama Aug 2017

Fret Biosensors: Engineering Fluorescent Proteins As Biological Tools For Studying Parkinson’S Disease, Nathan J. Leroy, Jacob R. Norley, Saranya Radhakrishnan, Mathew Tantama

The Summer Undergraduate Research Fellowship (SURF) Symposium

Parkinson’s Disease (PD) is a common neurodegenerative disease with over 200,000 new cases each year. In general, the cause of the disease is unknown, but oxidative stress inside of neurons has been associated with the disease’s pathology for some time. Currently, techniques to study the onset of PD inside of neurons are limited. This makes treatments and causes difficult to discover. One solution to this has been fluorescent protein biosensors. In short, these proteins can be engineered to glow when a certain state is achieved inside a cell. The present research discusses the engineering of a genetically-encoded fluorescent protein (FP) …


Fluorescent Protein Biosensor For Use In Parkinson's Research, Piper R. Miller, Keelan Trull, Mathew Tantama Aug 2017

Fluorescent Protein Biosensor For Use In Parkinson's Research, Piper R. Miller, Keelan Trull, Mathew Tantama

The Summer Undergraduate Research Fellowship (SURF) Symposium

Purinergic signaling is a type of extracellular communication that occurs between cells, mediated by adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine. In Parkinson’s Disease, purinergic signaling is disrupted, which contributes to neurodegeneration. In order to monitor this change in cell-to-cell signaling, there is a need for the development of a fluorescent protein (FP) biosensor to study the changes in the concentration of the signaling molecule ATP and its decomposition bioproduct ADP. This summer a genetically encoded ADP sensor that measures changes in ADP concentration was developed. This sensor utilizes Forster Resonance Energy Transfer (FRET) which is a sensing technique …


Identification And Metabolite Profiling Of Chemical Activators Of Lipid Accumulation In Green Algae, Nishikant Wase, Boqiang Tu, James Allen, Paul N. Black, Concetta Dirusso Aug 2017

Identification And Metabolite Profiling Of Chemical Activators Of Lipid Accumulation In Green Algae, Nishikant Wase, Boqiang Tu, James Allen, Paul N. Black, Concetta Dirusso

Department of Biochemistry: Faculty Publications

Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG …


Genetic Engineering Studies Of Escherichia Coli And Microalgae For Expression Of Hydrolytic Enzymes And Development Of High Throughput Screening Technique, Shreyas S. Yedahalli Jul 2017

Genetic Engineering Studies Of Escherichia Coli And Microalgae For Expression Of Hydrolytic Enzymes And Development Of High Throughput Screening Technique, Shreyas S. Yedahalli

Electronic Thesis and Dissertation Repository

The field of biochemical engineering has made substantial progress through major advances in genetic and metabolic engineering with applications in various sectors such as energy, food science, pharmaceuticals, etc. The hosts used for this work are constantly broadening. A host particularly important for energy applications are microalgae. The potential to enhance microalgae genetically for energy applications is not well explored and was therefore investigated in this thesis. Non-photosynthetic micro-organisms and photosynthetic microalgae offer a potential approach to enhance sustainable biochemical production. In this study expression vectors for Escherichia coli (E. coli) and Chlorella vulgaris (C. vulgaris) …


Correction For Sandai Et Al., The Evolutionary Rewiring Of Ubiquitination Targets Has Reprogrammed The Regulation Of Carbon Assimilation In The Pathogenic Yeast Candida Albicans, Doblin Sandai, Zhikang Yin, Laura Selway, David Stead, Janet Walker, Michelle D. Leach, Iryna Bohovych, Iuliana V. Ene, Stavroula Kastora, Susan Budge, Carol A. Munro, Frank C. Odds, Neil A.R. Gow, Alistair J.P. Brown Jul 2017

Correction For Sandai Et Al., The Evolutionary Rewiring Of Ubiquitination Targets Has Reprogrammed The Regulation Of Carbon Assimilation In The Pathogenic Yeast Candida Albicans, Doblin Sandai, Zhikang Yin, Laura Selway, David Stead, Janet Walker, Michelle D. Leach, Iryna Bohovych, Iuliana V. Ene, Stavroula Kastora, Susan Budge, Carol A. Munro, Frank C. Odds, Neil A.R. Gow, Alistair J.P. Brown

Janet Walker

No abstract provided.


The Evolutionary Rewiring Of Ubiquitination Targets Has Reprogrammed The Regulation Of Carbon Assimilation In The Pathogenic Yeast Candida Albicans, Doblin Sandai, Zhikang Yin, Laura Selway, David Stead, Janet Walker, Michelle D. Leach, Iryna Bohovych, Iuliana V. Ene, Stavroula Kastora, Susan Budge, Carol A. Munro, Frank C. Odds, Neil A.R. Gow, Alistair J.P. Brown Jul 2017

The Evolutionary Rewiring Of Ubiquitination Targets Has Reprogrammed The Regulation Of Carbon Assimilation In The Pathogenic Yeast Candida Albicans, Doblin Sandai, Zhikang Yin, Laura Selway, David Stead, Janet Walker, Michelle D. Leach, Iryna Bohovych, Iuliana V. Ene, Stavroula Kastora, Susan Budge, Carol A. Munro, Frank C. Odds, Neil A.R. Gow, Alistair J.P. Brown

Janet Walker

Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the …


Physiological Evidence For Isopotential Tunneling In The Electron Transport Chain Of Methane-Producing Archaea, Nikolas Duszenko, Nicole R. Buan Jul 2017

Physiological Evidence For Isopotential Tunneling In The Electron Transport Chain Of Methane-Producing Archaea, Nikolas Duszenko, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per …


Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton Jul 2017

Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton

Theses

Systemic Inflammatory Response Syndrome (SIRS) is classified as an immune system response to an infectious state. If left untreated, SIRS leads to sepsis, septic shock, end-organ dysfunction, and death. As a patient progresses through these stages, associations of acute respiratory distress, disseminated intravascular coagulation, and acute renal failure persist, resulting in millions of deaths annually. Lipopolysaccharide (LPS), a bacterial endotoxin, is released into the blood stream, triggering SIRS. LPS is found in the outer cell-wall of Gram-negative bacteria and is responsible for initiation of a devastating cytokine storm. One of the regions of LPS, lipid A, is a polyacylated glucosamine …


Protein-Protein Interactions Of Bacterial Topoisomerase I, Srikanth Banda Jun 2017

Protein-Protein Interactions Of Bacterial Topoisomerase I, Srikanth Banda

FIU Electronic Theses and Dissertations

Protein-protein interactions (PPIs) are essential features of cellular processes including DNA replication, transcription, translation, recombination, and repair. In my study, the protein interactions of bacterial DNA topoisomerase I, an essential enzyme, were investigated. The topoisomerase I in bacteria relaxes excess negative supercoiling on DNA and maintains genomic stability. Investigating the PPI network of DNA topoisomerase I can further our understanding of the various functional roles of this enzyme. My study is focused on topoisomerase I of Escherichia coli and Mycobacterium smegmatis. Firstly, we have explored the biochemical mechanisms for an interaction between RNA Polymerase, and topoisomerase I in E. …


Biochemical Characterization Of Arsi: A Novel C-As Lyase For Degradation Of Environmental Organoarsenicals, Shashank Suryakant Pawitwar Jun 2017

Biochemical Characterization Of Arsi: A Novel C-As Lyase For Degradation Of Environmental Organoarsenicals, Shashank Suryakant Pawitwar

FIU Electronic Theses and Dissertations

Organoarsenicals such as methylarsenical methylarsenate (MAs(V)) and aromatic arsenicals including roxarsone (4-hydroxy-3-nitrophenylarsenate or Rox(V)) have been extensively used as an herbicide and growth enhancers in animal husbandry, respectively. They undergo environmental degradation to more toxic inorganic arsenite (As(III)) that contaminates crops and drinking water. We previously identified a bacterial gene (arsI) responsible for aerobic MAs(III) demethylation. The gene product, ArsI, is a Fe(II)-dependent extradiol dioxygenase that cleaves the carbon-arsenic (C-As) bond in MAs(III) and trivalent aromatic arsenicals. The objective of this study was to elucidate the ArsI mechanism. Using isothermal titration calorimetry, we determined the dissociation constants (Kd) and ligand-to-protein …


Characterization Of Genes Involved In Phycobiliprotein Biosynthesis In Fremyella Diplosiphon And Thermosynechococcus Elongatus, Christina M. Kronfel May 2017

Characterization Of Genes Involved In Phycobiliprotein Biosynthesis In Fremyella Diplosiphon And Thermosynechococcus Elongatus, Christina M. Kronfel

University of New Orleans Theses and Dissertations

Cyanobacteria are photosynthetic organisms that efficiently capture light by utilizing the light-harvesting complexes called phycobilisomes. In many cyanobacteria, phycobilisomes are composed of an allophycocyanin core with phycocyanin and phycoerythrin (PE) rods radiating from the core. These phycobiliproteins have multiple bilin chromophores, such as phycoerythrobilin (PEB), covalently attached to specific cysteine (Cys) residues for efficient photosynthetic light capture. Chromophore ligation on phycobiliprotein subunits occurs through bilin lyase catalyzed reactions.

This study mainly focuses on characterizing the roles of enzymes that are involved in the biosynthetic pathway of the phycobiliproteins within two cyanobacteria Thermosynechococcus elongatus and Fremyella diplosiphon. A combination of molecular …


B7h6: A Cancer Biomarker For The Development Of Novel Immunotherapy Approaches, Mariana Phillips May 2017

B7h6: A Cancer Biomarker For The Development Of Novel Immunotherapy Approaches, Mariana Phillips

Seton Hall University Dissertations and Theses (ETDs)

Cancer-based immunotherapy has led the evolution of biologics that can stimulate immune responses towards tumor eradication. The synthesis of small to intermediate size molecules with the targeting and effector functions of mAb may represent a novel class of immunotherapeutics that may overcome the limitations of their biological counterparts.Towards this objective, B7H6 has been identified as a protein ligand localized on the cell surface of transformed tumor cells. B7H6 binds specifically to the activating receptor NKp30, constitutively expressed on all resting and active NK cells. Upon ligand:receptor binding, B7H6 triggers NK cell activation and release of chemokines and pro-inflammatory cytokines such …


Cloning, Purification, And Biochemical Characterization Of Human Prolyl Endopeptidase, Travis K. Moore May 2017

Cloning, Purification, And Biochemical Characterization Of Human Prolyl Endopeptidase, Travis K. Moore

Electronic Theses and Dissertations

Eurygaster integriceps Puton, common name sunn Pest, is one of the primary sources of wheat crop wastes in North Africa, Middle East, and Eastern Europe. It feeds by injecting the wheat grain with an enzyme characterized as prolyl endoprotease (spPEP) that breaks down Gluten, the wheat’s main constitutive protein necessary for bread production (Darkoh et al., 2010). Previously, it has been shown that peptides isolated from Lactobacillus hydrolysates of caseins in bovine milk are able to inhibit mammalian PEP in colon cells, as well as bacterial PEP (Juillerat-Jeanneret et al., 2010). While recombinant versions of these peptides are also potential …


Validation Of The Pre-B Cell Receptor As A Therapeutic Target In B Cell Precursor Acute Lymphoblastic Leukemia, Michael F. Erasmus Apr 2017

Validation Of The Pre-B Cell Receptor As A Therapeutic Target In B Cell Precursor Acute Lymphoblastic Leukemia, Michael F. Erasmus

Biomedical Sciences ETDs

This dissertation is built upon the fundamental idea that the pre-B cell receptor (pre-BCR) is important to leukemia cell survival and a logical therapeutic target in B cell precursor acute lymphoblastic leukemia (BCP-ALL). The pre-BCR is expressed early at a specific stage during B cell development where it plays a central role in survival of healthy B lymphocytes. This receptor is composed of the membrane heavy chain (mIgμ) associated with surrogate light chain components, 5 and VpreB. Through the use of advanced imaging modalities, in particular two-color single particle tracking (SPT), we showed that pre-BCRs formed transient, homotypic interactions. These …


Microbal Strans And Methods Of Making And Using, Nicole Roswitha Buan Murphy, Jennifer Catlett Mar 2017

Microbal Strans And Methods Of Making And Using, Nicole Roswitha Buan Murphy, Jennifer Catlett

Department of Biochemistry: Faculty Publications

Microbial strains are provided, as are methods of making and using Such microbial strains.


Pneb193-Derived Suicide Plasmids For Gene Deletion And Protein Expression In The Methane-Producing Archaeon, Methanosarcina Acetivorans, Mitchell T. Shea, Mary E. Walter, Nikolas Duszenko, Anne-Lise Ducluzeau, Jared Aldridge, Shannon K. King, Nicole R. Buan Mar 2017

Pneb193-Derived Suicide Plasmids For Gene Deletion And Protein Expression In The Methane-Producing Archaeon, Methanosarcina Acetivorans, Mitchell T. Shea, Mary E. Walter, Nikolas Duszenko, Anne-Lise Ducluzeau, Jared Aldridge, Shannon K. King, Nicole R. Buan

Department of Biochemistry: Faculty Publications

Gene deletion and protein expression are cornerstone procedures for studying metabolism in any organism, including methane-producing archaea (methanogens). Methanogens produce coenzymes and cofactors not found in most bacteria, therefore it is sometimes necessary to express and purify methanogen proteins from the natural host. Protein expression in the native organism is also useful when studying post-translational modifications and their effect on gene expression or enzyme activity. We have created several new suicide plasmids to complement existing genetic tools for use in the methanogen, Methanosarcina acetivorans. The new plasmids are derived from the commercially available E. coli plasmid, pNEB193, and cannot replicate …


The Role Of Estrogen In Mouse Gastric Stem Cell Homeostasis, Aysha Mohamed Yusuf Alkaabi Mar 2017

The Role Of Estrogen In Mouse Gastric Stem Cell Homeostasis, Aysha Mohamed Yusuf Alkaabi

Theses

To maintain cellular homeostasis, the epithelial lining of the stomach wall continuously fluctuates between cellular proliferation, differentiation, and apoptosis. A key player in this process is the gastric stem cell (GSC). GSCs are located in the isthmus region of the corpus gastric gland and have the potential to proliferate and differentiate. Although several pathways have been identified to regulate stem cell role in several body tissues, little is known about controlling GSC homeostasis. This project aims to study the role of estrogen (E2) in GSC homeostasis using the well-established mouse gastric epithelial progenitor (mGEP) cell line. Our data showed that …