Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos Dec 2016

Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos

Open Access Theses

Lignocellulose is composed of polysaccharides linked to lignin and other aromatic compounds, making the sugars not readily available to fermentation. This entails that biomass must go through the unit operations of pretreatment and enzyme hydrolysis. Pretreatment opens the structure to allow the enzymes to act on and hydrolyze cellulose and hemicellulose to glucose and/or xylose which in turn are fermented to ethanol. Concomitantly, the enzymes interact with soluble phenols and insoluble solids derived from lignin that inhibit hydrolysis. This leads to high enzyme loadings and higher production costs. Soluble phenols can be eliminated through washing. Insoluble lignin, however, demands another …


Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Graduate Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks …


Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti Dec 2016

Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti

Graduate Theses and Dissertations

In an effort to expand the pool of bacterium useful for biotechnology applications, Pseudomonas fluorescens, a common gram negative microbe, was examined for its ability to function in a recombinant setting. P. fluorescens is ubiquitous in nature and was initially identified as a soil bacterium found in dirt and is typically associated with plant material. Past literature indicates that it shared characteristics common to Escherichia coli and Bacillus subtilis, including simple growth conditions and potential cloning vectors, providing motivation to look into both the upstream and downstream characteristics of this bacterium. First, it was demonstrated that P. fluorescens could be …


Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu Dec 2016

Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu

Graduate Theses and Dissertations

Membrane chromatography, or membrane adsorber, represents an attractive alternative to conventional packed bed chromatography used in downstream processing. Membrane chromatography has many advantages, including high productivity, low buffer consumption and ease to scale up. This doctoral dissertation focuses on developing novel polymeric ligands for protein separations using membrane chromatography. Atom transfer radical polymerization (ATRP), known as a controlled radical polymerization technique, has been used to control the architecture of grafted polymeric ligands. The center theme of this dissertation is to develop new polymeric ligands and investigate how the polymer’s property (e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) …


Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace Aug 2016

Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace

Open Access Theses

The market for bio-based products from plant sources is on the rise. There is a global challenge to implement environmentally clean practices for the production of fuels and pharmaceuticals from sustainable resources. A significant hurdle for discovery of comparable plant-derived products is the extensive volume of trial-and-error experimentation required. To alleviate the experimental burden, a quantum mechanics based molecular modeling approach known as the COnductor-like Screening Model for Real Solvents (COSMO-RS) was used to predict the best biphasic solvent system to purify silymarins from an aqueous mixture. Silymarins are a class of flavonolignans present in milk thistle ( Silybum marianum …


Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma May 2016

Genotoxicity Of Graphene In Escherichia Coli, Ananya Sharma

Graduate Theses and Dissertations

Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, …