Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Myxobacteria Versus Sponge-Derived Alkaloids: The Bengamide Family Identified As Potent Immune Modulating Agents By Scrutiny Of Lc-Ms/Elsd Libraries., Tyler A. Johnson, Johann Sohn, Yvette M Vaske, Kimberly N White, Tanya L Cohen, Helene C Vervoort, Karen Tenney, Frederick A Valeriote, Leonard F Bjeldanes, Phillip Crews Feb 2019

Myxobacteria Versus Sponge-Derived Alkaloids: The Bengamide Family Identified As Potent Immune Modulating Agents By Scrutiny Of Lc-Ms/Elsd Libraries., Tyler A. Johnson, Johann Sohn, Yvette M Vaske, Kimberly N White, Tanya L Cohen, Helene C Vervoort, Karen Tenney, Frederick A Valeriote, Leonard F Bjeldanes, Phillip Crews

Tyler Johnson

A nuclear factor-κB (NF-κB) luciferase assay has been employed to identify the bengamides, previously known for their anti-tumor activity, as a new class of immune modulators. A unique element of this study was that the bengamide analogs were isolated from two disparate sources, Myxococcus virescens (bacterium) and Jaspis coriacea (sponge). Comparative LC-MS/ELSD and NMR analysis facilitated the isolation of M. viriscens derived samples of bengamide E (8) and two congeners, bengamide E' (13) and F' (14) each isolated as an insperable mixture of diastereomers. Additional compounds drawn from the UC, Santa Cruz repository allowed expansion of the structure activity relationship …


Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar Oct 2012

Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar

Celia A. Schiffer

The small quantities of protein required for mass spectrometry (MS) make it a powerful tool to detect binding (protein-protein, protein-small molecule, etc.) of proteins that are difficult to express in large quantities, as is the case for many intrinsically disordered proteins. Chemical cross-linking, proteolysis, and MS analysis, combined, are a powerful tool for the identification of binding domains. Here, we present a traditional approach to determine protein-protein interaction binding sites using heavy water ((18)O) as a label. This technique is relatively inexpensive and can be performed on any mass spectrometer without specialized software.


Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler Feb 2008

Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler

Jeffrey S. Morris

Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The …


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for …