Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Ellen Moomaw

Penetration

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Fungal Oxalate Decarboxylase Activity Contributes To Sclerotinia Sclerotiorum Early Infection By Affecting Both Compound Appressoria Development And Function, Xiaofei Liang, Ellen W. Moomaw, Jeffrey A. Rollins Jun 2016

Fungal Oxalate Decarboxylase Activity Contributes To Sclerotinia Sclerotiorum Early Infection By Affecting Both Compound Appressoria Development And Function, Xiaofei Liang, Ellen W. Moomaw, Jeffrey A. Rollins

Ellen Moomaw

Sclerotinia sclerotiorum pathogenesis requires the accumulation of high levels of oxalic acid (OA). To better understand the factors affecting OA accumulation, two putative oxalate decarboxylase (OxDC) genes (Ss-odc1 and Ss-odc2) were characterized. Ss-odc1 transcripts exhibited significant accumulation in vegetative hyphae, apothecia, early stages of compound appressorium development and during plant colonization. Ss-odc2 transcripts, in contrast, accumulated significantly only during mid to late stages of compound appressorium development. Neither gene was induced by low pH or exogenous OA in vegetative hyphae. A loss-of-function mutant for Ss-odc1 (Δss-odc1) showed wild-type growth, morphogenesis and virulence, and was not characterized further. Δss-odc2 mutants hyperaccumulated …


Fungal Oxalate Decarboxylase Activity Contributes To Sclerotinia Sclerotiorum Early Infection By Affecting Both Compound Appressoria Development And Function, Xiaofei Liang, Ellen W. Moomaw, Jeffrey A. Rollins Jun 2016

Fungal Oxalate Decarboxylase Activity Contributes To Sclerotinia Sclerotiorum Early Infection By Affecting Both Compound Appressoria Development And Function, Xiaofei Liang, Ellen W. Moomaw, Jeffrey A. Rollins

Ellen Moomaw

Sclerotinia sclerotiorum pathogenesis requires the accumulation of high levels of oxalic acid (OA). To better understand the factors affecting OA accumulation, two putative oxalate decarboxylase (OxDC) genes (Ss-odc1 and Ss-odc2) were characterized. Ss-odc1 transcripts exhibited significant accumulation in vegetative hyphae, apothecia, early stages of compound appressorium development and during plant colonization. Ss-odc2 transcripts, in contrast, accumulated significantly only during mid to late stages of compound appressorium development. Neither gene was induced by low pH or exogenous OA in vegetative hyphae. A loss-of-function mutant for Ss-odc1 (Δss-odc1) showed wild-type growth, morphogenesis and virulence, and was not characterized further. Δss-odc2 mutants hyperaccumulated …