Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg May 2015

Regulation Of The Ampa Glutamate Receptor Homolog Glr-1 At The Endoplasmic Reticulum In C. Elegans., Sam Witus, Lina Dahlberg

Scholars Week

In C. elegans, the glutamate receptor GLR-1 functions in the nervous system to decode environmental stimuli and sensory experiences, and to regulate locomotion and the formation of long-term memory. C. elegans GLR-1 is homologous to mammalian glutamate receptors, and we can use this simple organism as a system to better understand the life cycle of human receptors (1). Because GLR-1 is a membrane protein, it is first assembled in the interior of a neuron, and then it is transported to the membrane at the surface of the cell so that it can receive chemical signals (glutamate) from the environment. Currently, …


Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs Oct 2013

Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Set1 complex, a histone methyltransferase complex found in S. cerevisiae (budding yeast), is the only histone methyltransferase responsible for catalyzing methylation of histone H3 at Lysine 4. It possesses homologues in other species, humans included. While yeast only have the Set1 complex, the human homologues of the yeast Set1 complex include mixed-lineage leukemia family (MLL1-4), Set1 A, Set1 B, among others. MLL1-4 has been shown to play a role in transcription, cell type specification, and the development of leukemia. One application of characterizing the role of a protein is that the information gained can provide insight into the function …