Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Biochemistry Faculty Publications

Molecular

Articles 1 - 9 of 9

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Huwe1 Is A Molecular Link Controlling Raf-1 Activity Supported By The Shoc2 Scaffold, Eun Ryoung Jang, Ping Shi, Jamal Bryant, Jing Chen, Vikas Dukhande, Matthew S. Gentry, Hyein Jang, Myoungkun Jeoung, Emilia Galperin Oct 2014

Huwe1 Is A Molecular Link Controlling Raf-1 Activity Supported By The Shoc2 Scaffold, Eun Ryoung Jang, Ping Shi, Jamal Bryant, Jing Chen, Vikas Dukhande, Matthew S. Gentry, Hyein Jang, Myoungkun Jeoung, Emilia Galperin

Molecular and Cellular Biochemistry Faculty Publications

Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, …


Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow Jan 2013

Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow

Molecular and Cellular Biochemistry Faculty Publications

The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of …


Cysteine 904 Is Required For Maximal Insulin Degrading Enzyme Activity And Polyanion Activation, Eun Suk Song, Manana Melikishvili, Michael G. Fried, Maria A. Juliano, Luiz Juliano, David W. Rodgers, Louis B. Hersh Oct 2012

Cysteine 904 Is Required For Maximal Insulin Degrading Enzyme Activity And Polyanion Activation, Eun Suk Song, Manana Melikishvili, Michael G. Fried, Maria A. Juliano, Luiz Juliano, David W. Rodgers, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE) to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue individually revealed cysteine 904 as the key residue required for maximal activity and polyanion activation, although other cysteines affect polyanion binding to a lesser extent. Based on the structure of IDE, Asn 575 was identified as a potential hydrogen bond partner for Cys904 and mutation of this residue also …


Lafora Disease E3-Ubiquitin Ligase Malin Is Related To Trim32 At Both The Phylogenetic And Functional Level, Carlos Romá-Mateo, Daniel Moreno, Santiago Vernia, Teresa Rubio, Travis M. Bridges, Matthew S. Gentry, Pascual Sanz Jul 2011

Lafora Disease E3-Ubiquitin Ligase Malin Is Related To Trim32 At Both The Phylogenetic And Functional Level, Carlos Romá-Mateo, Daniel Moreno, Santiago Vernia, Teresa Rubio, Travis M. Bridges, Matthew S. Gentry, Pascual Sanz

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.

RESULTS: After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming …


Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers Jun 2011

Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.

PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric …


Direct Cloning Of Double-Stranded Rnas From Rnase Protection Analysis Reveals Processing Patterns Of C/D Box Snornas And Provides Evidence For Widespread Antisense Transcript Expression, Manli Shen, Eduardo Eyras, Jie Wu, Amit Khanna, Serene Josiah, Mathieu Rederstorff, Michael Q. Zhang, Stefan Stamm Jan 2011

Direct Cloning Of Double-Stranded Rnas From Rnase Protection Analysis Reveals Processing Patterns Of C/D Box Snornas And Provides Evidence For Widespread Antisense Transcript Expression, Manli Shen, Eduardo Eyras, Jie Wu, Amit Khanna, Serene Josiah, Mathieu Rederstorff, Michael Q. Zhang, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

We describe a new method that allows cloning of double-stranded RNAs (dsRNAs) that are generated in RNase protection experiments. We demonstrate that the mouse C/D box snoRNA MBII-85 (SNORD116) is processed into at least five shorter RNAs using processing sites near known functional elements of C/D box snoRNAs. Surprisingly, the majority of cloned RNAs from RNase protection experiments were derived from endogenous cellular RNA, indicating widespread antisense expression. The cloned dsRNAs could be mapped to genome areas that show RNA expression on both DNA strands and partially overlapped with experimentally determined argonaute-binding sites. The data suggest a conserved processing pattern …


Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley Oct 2010

Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley

Molecular and Cellular Biochemistry Faculty Publications

RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the …


Conservation Of The Glucan Phosphatase Laforin Is Linked To Rates Of Molecular Evolution And The Glucan Metabolism Of The Organism, Matthew S. Gentry, Rachel M. Pace Jun 2009

Conservation Of The Glucan Phosphatase Laforin Is Linked To Rates Of Molecular Evolution And The Glucan Metabolism Of The Organism, Matthew S. Gentry, Rachel M. Pace

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Lafora disease (LD) is a fatal autosomal recessive neurodegenerative disease. A hallmark of LD is cytoplasmic accumulation of insoluble glucans, called Lafora bodies (LBs). Mutations in the gene encoding the phosphatase laforin account for approximately 50% of LD cases, and this gene is conserved in all vertebrates. We recently demonstrated that laforin is the founding member of a unique class of phosphatases that dephosphorylate glucans.

RESULTS: Herein, we identify laforin orthologs in a protist and two invertebrate genomes, and report that laforin is absent in the vast majority of protozoan genomes and it is lacking in all other invertebrate …


Evidence That Talin Alternative Splice Variants From Ciona Intestinalis Have Different Roles In Cell Adhesion, Richard H. Singiser, Richard O. Mccann Dec 2006

Evidence That Talin Alternative Splice Variants From Ciona Intestinalis Have Different Roles In Cell Adhesion, Richard H. Singiser, Richard O. Mccann

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is …