Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Biochemistry Faculty Publications

Evolution, Molecular

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Archaeal Nucleosome Positioning In Vivo And In Vitro Is Directed By Primary Sequence Motifs, Narasimharao Nalabothula, Liqun Xi, Sucharita Bhattacharyya, Jonathan Widom, Ji-Ping Wang, John N. Reeve, Thomas J. Santangelo, Yvonne N. Fondufe-Mittendorf Jun 2013

Archaeal Nucleosome Positioning In Vivo And In Vitro Is Directed By Primary Sequence Motifs, Narasimharao Nalabothula, Liqun Xi, Sucharita Bhattacharyya, Jonathan Widom, Ji-Ping Wang, John N. Reeve, Thomas J. Santangelo, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Background: Histone wrapping of DNA into nucleosomes almost certainly evolved in the Archaea, and predates Eukaryotes. In Eukaryotes, nucleosome positioning plays a central role in regulating gene expression and is directed by primary sequence motifs that together form a nucleosome positioning code. The experiments reported were undertaken to determine if archaeal histone assembly conforms to the nucleosome positioning code.

Results: Eukaryotic nucleosome positioning is favored and directed by phased helical repeats of AA/TT/AT/TA and CC/GG/CG/GC dinucleotides, and disfavored by longer AT-rich oligonucleotides. Deep sequencing of genomic DNA protected from micrococcal nuclease digestion by assembly into archaeal nucleosomes has established that …


Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow Jan 2013

Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow

Molecular and Cellular Biochemistry Faculty Publications

The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of …


An Evolutionarily Conserved Rit Gtpase-P38 Mapk Signaling Pathway Mediates Oxidative Stress Resistance, Weikang Cai, Jennifer L. Rudolph, Susan M. W. Harrison, Ling Jin, Aubrey L. Frantz, Douglas A. Harrison, Douglas A. Andres Sep 2011

An Evolutionarily Conserved Rit Gtpase-P38 Mapk Signaling Pathway Mediates Oxidative Stress Resistance, Weikang Cai, Jennifer L. Rudolph, Susan M. W. Harrison, Ling Jin, Aubrey L. Frantz, Douglas A. Harrison, Douglas A. Andres

Molecular and Cellular Biochemistry Faculty Publications

Ras-related small GTP-binding proteins control a wide range of cellular processes by regulating a variety of effector pathways, including prominent roles in the control of mitogen-activated protein kinase (MAPK) cascades. Although the regulatory role(s) for many Ras family GTPases are well established, the physiological function for the Rit/Rin subfamily has been lacking. Here, using both knockout mice and Drosophila models, we demonstrate an evolutionarily conserved role for Rit subfamily GTPases (mammalian Rit and Rin, and the Drosophila RIC homologue) in governing survival in response to oxidative stress. Primary embryonic fibroblasts derived from Rit knockout mice display increased apoptosis and selective …


Lafora Disease E3-Ubiquitin Ligase Malin Is Related To Trim32 At Both The Phylogenetic And Functional Level, Carlos Romá-Mateo, Daniel Moreno, Santiago Vernia, Teresa Rubio, Travis M. Bridges, Matthew S. Gentry, Pascual Sanz Jul 2011

Lafora Disease E3-Ubiquitin Ligase Malin Is Related To Trim32 At Both The Phylogenetic And Functional Level, Carlos Romá-Mateo, Daniel Moreno, Santiago Vernia, Teresa Rubio, Travis M. Bridges, Matthew S. Gentry, Pascual Sanz

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin.

RESULTS: After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming …


Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley Oct 2010

Retention And Loss Of Rna Interference Pathways In Trypanosomatid Protozoans, Lon-Fye Lye, Katherine Owens, Huafang Shi, Silvane M. F. Murta, Ana Carolina Vieira, Salvatore J. Turco, Christian Tschudi, Elisabetta Ullu, Stephen M. Beverley

Molecular and Cellular Biochemistry Faculty Publications

RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the …


Conservation Of The Glucan Phosphatase Laforin Is Linked To Rates Of Molecular Evolution And The Glucan Metabolism Of The Organism, Matthew S. Gentry, Rachel M. Pace Jun 2009

Conservation Of The Glucan Phosphatase Laforin Is Linked To Rates Of Molecular Evolution And The Glucan Metabolism Of The Organism, Matthew S. Gentry, Rachel M. Pace

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Lafora disease (LD) is a fatal autosomal recessive neurodegenerative disease. A hallmark of LD is cytoplasmic accumulation of insoluble glucans, called Lafora bodies (LBs). Mutations in the gene encoding the phosphatase laforin account for approximately 50% of LD cases, and this gene is conserved in all vertebrates. We recently demonstrated that laforin is the founding member of a unique class of phosphatases that dephosphorylate glucans.

RESULTS: Herein, we identify laforin orthologs in a protist and two invertebrate genomes, and report that laforin is absent in the vast majority of protozoan genomes and it is lacking in all other invertebrate …