Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Masters Theses

Katanin

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Regulation Of Katanin Activity On Microtubules, Madison A. Tyler Oct 2017

Regulation Of Katanin Activity On Microtubules, Madison A. Tyler

Masters Theses

The cytoskeleton is a dynamic network of microtubules constantly being reorganized to meet the spatiotemporal demands of the cell. Microtubules are organized into subcellular highways to control cell processes such as cell division, cargo transport, and neuronal development and maintenance. Reorganization of this intricate network is tightly regulated by various stabilizing and destabilizing microtubule-associated proteins that decorate the network. Katanin p60 is a microtubule destabilizing enzyme from the ATPases Associated with various Activities (AAA+) family. It can both sever and depolymerize microtubules. In order to sever microtubules, katanin recognizes the tubulin carboxy-terminal tails (CTTs) and hydrolyzes ATP. Using super-resolution microscopy …


Characterizing The Inhibition Of Katanin Using Tubulin Carboxy-Terminal Tail Constructs, Corey E. Reed Nov 2016

Characterizing The Inhibition Of Katanin Using Tubulin Carboxy-Terminal Tail Constructs, Corey E. Reed

Masters Theses

Understanding how the cellular cytoskeleton is maintained and regulated is important to elucidate the functions of many structures such as the mitotic spindle, cilia and flagella. Katanin p60, microtubule-severing enzymes from the ATPase associated with cellular activities (AAA+) family, has previously been shown in our lab to be inhibited by free tubulin as well as α- and β-tubulin carboxy-terminal tail (CTT) constructs. Here we investigate the inhibition ability of several different tubulin CTT sequences. We quantify the effect of the addition of these constructs on the severing and binding activity of katanin. We find that some constructs inhibit katanin better …