Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis Mar 2023

Small Gtpase Regulated Intracellular Protein Trafficking In Endothelium, Caitlin Francis

Electronic Theses and Dissertations

Intracellular protein trafficking is the movement of membrane-bound organelles to and from requisite locations within the cell. Small GTPases are a critical component to the spatiotemporal accuracy of intracellular trafficking pathways as they determine the specificity and direction of organelle transport. There exists over 150 small GTPases categorized into 5 sub-families and are employed across all cell types. Despite their universal expression and relevance to cellular function, small GTPases remain incompletely understood across tissue types. In various instances, the trafficking pathway of a particular Rab in one cell type may belong to a completely disparate pathway in another cell type. …


Lipophilic Probes For Cellular Ethylene Detection, Morgan R. Brown Jan 2022

Lipophilic Probes For Cellular Ethylene Detection, Morgan R. Brown

Electronic Theses and Dissertations

The structure of ethylene is simple, yet its biological effects are significant. When considering its role in biology it is almost exclusively regarded as a plant hormone. Research on ethylene from plants was progressed by several advancements in analytical instrumentation, from its discovery to elucidation of its signaling pathway. There is currently limited understanding of ethylene’s role in mammals, but evidence suggests that it may be a biomarker for oxidative stress! Additional tools and technology are crucial to study this surprising and important signaling role in mammals. Our group has developed molecular ethylene probes as a strategy to detect ethylene …


The Pathophysiological Mechanisms Of Alzheimer's Disease; Investigating Therapeutic Interventions For Disease Onset, Alexandra A. Sandberg Jan 2022

The Pathophysiological Mechanisms Of Alzheimer's Disease; Investigating Therapeutic Interventions For Disease Onset, Alexandra A. Sandberg

Electronic Theses and Dissertations

Alzheimer’s Disease is a multifarious disease that progressively affects more people as both the proportion of older adults in the population and life expectancy increase in both the United States and worldwide. This devastating disease is a result of rampant neuronal loss in the memory centers of the brain that robs the independence of those who are diagnosed and places a heavy burden on those who care for them. Traditionally speaking, research has focused on the hallmark pathology of amyloid plaques, targeting them to try and prevent disease onset. However, countless failures in clinical trials aimed at this said pathology …


The Role Of Ehd2 In Endothelial Cells, Rachael Judson Jan 2022

The Role Of Ehd2 In Endothelial Cells, Rachael Judson

Electronic Theses and Dissertations

The role of EHD2 in terms of Cav1 interaction had not been previously characterized and was the main goal of this research. Cav1 has been shown to lead to the ubiquitination of Rac1. Because of this, the role of EHD2 in Rac1 regulation was investigated. An increase in long-term migration in endothelial cells was observed and suggested that EHD2 impacts the RhoA pathway instead of the Rac1 pathway. This lead to the hypothesis that EHD2 controls a part of the RhoA pathway. This hypothesis is supported by the loss of filamentous actin and an increase in serrated junctions in cells …


Investigating Spatiotemporal Kinetics, Dynamics, And Mechanism Of Exosome Release, Anarkali Mahmood Jan 2022

Investigating Spatiotemporal Kinetics, Dynamics, And Mechanism Of Exosome Release, Anarkali Mahmood

Electronic Theses and Dissertations

Exosomes are small lipid-based vesicles that can carry biomolecules from one cell to another. While exosomes are crucial to maintain homeostasis in healthy cells, they are exploited by unhealthy cells to aid disease progression. Exosomes likely facilitate disease progression via the transfer of disease-causing biomolecules from unhealthy to healthy cells. Exosomes are generated in Multivesicular endosomes (MVEs) and are then secreted into the extracellular space to travel to other cells. Despite being a crucial step, very little is known about exosomes release mechanism and dynamics. To further our understanding of exosomes, specifically their secretion, my work has focused on investigating …


Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley Jan 2022

Organellar Zn2+ Homeostasis And The Role Of Trpml Channels In Neuronal Lysosome Physiology And Axonal Transport, Taylor Franklin Minckley

Electronic Theses and Dissertations

Zinc (Zn2+) is crucial for proper cellular function, and as such it is important to measure and track Zn2+ dynamics in living cells. Fluorescent sensors have been used to estimate Zn2+ content of subcellular compartments, but little is known about endolysosomal Zn2+ homeostasis. Similarly, although numerous sensors have been reported, it is unclear whether and how Zn2+ can be released from intracellular compartments into the cytosol due to a lack of probes that can detect physiological dynamics of cytosolic Zn2+. My dissertation started with comparing and characterizing different Zn2+ sensors including the …


Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph Jan 2022

Inhibition Of De Novo And The Prion-Like Spread Of Amyloidogenesis Using In Vitro And In Vivo Disease Models, Johnson Anazoba Joseph

Electronic Theses and Dissertations

The aberrant fibrous, extracellular, and intracellular proteinaceous deposits in cells, organs and tissues are referred to as amyloids. These deposits are dominated by β-sheet structures that have been implicated in several neurodegenerative diseases and cancer. In this work, the types of amyloidosis studied include Parkinson’s disease (PD) using UA196 and NL5901 strains of Caenorhabditis elegans (C. elegans), Alzheimer’s disease (AD) using GMC101 strain of C. elegans, and cancer-associated mutant p53 aggregation in MIA PaCa-2 mutant cells. Several molecules including SK-129, NS132, NS163, bexarotene, a polyphenol (-)-epi-gallocatechine gallate (EGCG), ADH40, RD148, and RD242 were screened in vitro and in …


Antioxidant Biomarkers And Nutraceutical Therapeutics In Neurodegeneration And Neurotrauma, Lilia A. Koza Jan 2022

Antioxidant Biomarkers And Nutraceutical Therapeutics In Neurodegeneration And Neurotrauma, Lilia A. Koza

Electronic Theses and Dissertations

Mild traumatic brain injury (mTBI), yielding a Glascow Coma Scale of 13-15, is the most commonly occurring severity of TBI. Pathology from mTBI consists of blood brain barrier disruption, neuroinflammation, oxidative stress, excitotoxicity, mitochondrial dysfunction, protein aggregation, axonal degeneration, and resulting neuronal death. These processes deplete the body’s endogenous antioxidant system. We report a retrospective analysis of antioxidant blood biomarkers in patients with a history of mTBI from a local sports medicine clinic, Resilience Code. We found persistent sex-specific antioxidant depletions in mTBI patients associated with worsened symptomology.

Certain populations, such as athletes, are at high risk for repetitive mTBI …


Optimized Microbial Recombinant Production Of Hiv-1 Anti-Envelope Antibody Fragments With Applications To Single Particle Tracking Of Virus Assembly, Merissa Michelle Bruns Jan 2021

Optimized Microbial Recombinant Production Of Hiv-1 Anti-Envelope Antibody Fragments With Applications To Single Particle Tracking Of Virus Assembly, Merissa Michelle Bruns

Electronic Theses and Dissertations

In my findings, I have established a set series of protocols to recombinantly produce, purify and apply various fluorescent probes in vitro for the fluorescent labeling and study of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein during HIV viral assembly. There remains insufficient knowledge about the molecular dynamics and interactions of HIV-1 Env protein with its counterpart, Gag, on the inner host cell surface during assembly of a mature virus particle. There also remains an insufficient amount of data for the understanding and clarification of the mechanism of action of a known host cell HIV-1 restriction factor, …


Rab35 Centered Membrane Trafficking Pathway Directs Apical Constriction During Drosophila Gastrulation, Hui Miao Jan 2021

Rab35 Centered Membrane Trafficking Pathway Directs Apical Constriction During Drosophila Gastrulation, Hui Miao

Electronic Theses and Dissertations

Force generation in epithelial tissues is often pulsatile, with actomyosin networks generating high-tension contractile forces at the cell cortex before cyclically disassembling. This pulsed nature of cytoskeletal forces implies that there must be cellular processes to extract unidirectional changes that drive processive transformations in cell shape. During Drosophila melanogastergastrulation, the invagination of the prospective mesoderm is driven by the pulsed constriction of apical surfaces. Here, we address the mechanisms by which the irreversibility of pulsed events is achieved while also permitting uniform epithelial behaviors to emerge. We use MSD-based analyses to identify contractile steps and find that when a …


Validation Of A Deployable Proteomic Assay For The Serological Screening Of Sexual Assault Samples, Catherine O'Sullivan Brown Jan 2021

Validation Of A Deployable Proteomic Assay For The Serological Screening Of Sexual Assault Samples, Catherine O'Sullivan Brown

Electronic Theses and Dissertations

Protein mass spectrometry (MS) has emerged as a technique to supplant traditional serological tests for body fluid identification. It was hypothesized that proteomic techniques would surpass the sensitivity and specificity of traditional serological techniques. An automated workflow coupled with protein MS has been developed for the confirmatory identification of five biological fluids. A developmental validation was completed, assessing parameters such as reproducibility, sensitivity, ion suppression, and limit of detection. Implementation was determined through tandem sample processing by MS, traditional serological tests, and standard DNA profiling methods. The MS approach offered superior detection limits while also providing true confirmatory results, producing …


Nucleic Acids Promote Oligomerization Of Immunoglobulin G, Alexa Gomez Jan 2021

Nucleic Acids Promote Oligomerization Of Immunoglobulin G, Alexa Gomez

Electronic Theses and Dissertations

Nucleic acids have been found to prevent aggregation as chaperones, as well as act as co-factors and promote aggregation of amyloidogenic proteins leading to various diseases. Immunoglobulin G, IgG, are prone to aggregate as therapeutic proteins, and light chains of IgG can form amyloid fibrils, causing a disease known as light chain amyloidosis. Here we discuss the effect nucleic acids have on full-length immunoglobulin G aggregation. Our results show G-quadruplex DNA, and bulk DNA lead to oligomerization of full-length IgG, and induce increases in secondary structure. Tryptophan fluorescence indicates structural changes are occurring in the presence of DNA. Additionally, IgG …


Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui Jan 2021

Modeling Disorder In Proteins Yields Insights Into The Evolution Of Stability And Function, Jonathan Huihui

Electronic Theses and Dissertations

The central dogma of molecular biology dictates that a DNA sequence codes for an RNA sequence, which in turn codes for a sequence of amino acids that comprises a protein. Proteins are responsible with performing myriad functions within living organisms and most proteins require a folded structure in order to perform their function. The protein's structure is the direct link from sequence to function. This is known as the sequence - structure - function paradigm. However, this does not mean that the unfolded state is unimportant. In order to properly model the stability of the folded state, one needs to …


Characterization Of The Whale Shark (Rhincodon Typus) Melanocortin-2 Receptor, Brianne Hoglin Jan 2021

Characterization Of The Whale Shark (Rhincodon Typus) Melanocortin-2 Receptor, Brianne Hoglin

Electronic Theses and Dissertations

Among bony vertebrates, the melanocortin-2 receptor ortholog is unique among the family of five melanocortin receptors on the basis that it is dependent on its accessory protein, MRAP1, for trafficking and activation, and is selective for activation by ACTH alone. Previous studies on the MC2R orthologs of select cartilaginous fish, the elephant shark (Callorhinchus milii) and the red stingray (Dasyatis akajei), revealed divergent traits in a less obligatory relationship on MRAP1 and its ability to be activated by ACTH or the MSH-sized peptides. However, observed traits were not consistent between these two cartilaginous fish species, posing …


Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar Jan 2021

Development Of Endoplasmic Reticulum Targeted Probes And Red Fluorescent Probes For Detecting Zinc, Drew Maslar

Electronic Theses and Dissertations

Zinc (Zn2+) is the second most abundant transition metal in the body and is important in various biological functions. Fluorescent sensors based on circularly permuted fluorescent proteins (cpFPs) have been previously made to detect labile, or unbound, Zn2+ within the cytoplasm of cells. These sensors have proven invaluable for studying Zn2+, however, these sensors are limited to their use in the cytoplasm and by the fact that only green cpFP have been utilized to create fluorescent Zn2+ sensors. In this thesis, we use a combination of peptide targeting sequences, site-directed mutagenesis, and rational design …


Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke Jan 2021

Fxs-Causing Point Mutations In Fmrp Disrupt Neuronal Granule Formation And Function, Emily L. Starke

Electronic Theses and Dissertations

Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by the disruption of Fragile X Mental Retardation Protein (FMRP) function in neurons, affecting nearly 1 in 7,500 individuals. Although FXS typically occurs from a complete loss of FMRP expression due to a CGG trinucleotide expansion within the 5’UTR of the FMR1 gene, single nucleotide polymorphisms (SNPs) within the KH domains of FMRP have been shown to severely disrupt FMRP function. FMRP is an RNA-binding translation repressor that interacts with ~4% of the neuronal transcriptome. Many target mRNAs encode for proteins important for regulating synaptic processes and modulate synaptic plasticity. It …


Notch Regulates Vascular Collagen Iv Basement Membrane Through Modulation Of Lysyl Hydroxylase 3 Trafficking, Stephen J.B. Gross Jan 2021

Notch Regulates Vascular Collagen Iv Basement Membrane Through Modulation Of Lysyl Hydroxylase 3 Trafficking, Stephen J.B. Gross

Electronic Theses and Dissertations

Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have …