Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Quantitative Visualization Tool For The Assessment Of Mammographic Risky Dense Tissue Types, Margaret R. Mccarthy Aug 2023

A Quantitative Visualization Tool For The Assessment Of Mammographic Risky Dense Tissue Types, Margaret R. Mccarthy

Electronic Theses and Dissertations

Breast cancer is the second most occurring cancer type and is ranked fifth in terms of mortality. X-ray mammography is the most common methodology of breast imaging and can show radiographic signs of cancer, such as masses and calcifcations. From these mammograms, radiologists can also assess breast density, which is a known cancer risk factor. However, since not all dense tissue is cancer-prone, we hypothesize that dense tissue can be segregated into healthy vs. risky subtypes. We propose that risky dense tissue is associated with tissue microenvironment disorganization, which can be quantified via a computational characterization of the whole breast …


Epitranscriptomic Regulation In Breast Cancer And Pcb-Induced Liver Disease., Belinda Petri Aug 2023

Epitranscriptomic Regulation In Breast Cancer And Pcb-Induced Liver Disease., Belinda Petri

Electronic Theses and Dissertations

Post-transcriptional RNA modifications including N6-methyladenosine (m6A) regulate mRNA stability, splicing, and translation. My research examined m6A in two disease models: breast cancer (BCa) and non-alcoholic fatty liver disease (NAFLD). Acquired resistance to endocrine therapies (ET) develops in approximately 20% of BCa patients with estrogen receptor α positive (ER+) tumors following treatment. The mechanisms by which tumor cells evade ET are not completely understood. Using a cell line model, we investigated the role of an m6A reader protein, HNRNPA2B1 (A2B1) that is upregulated in ET-resistant ER+ BCa cells. Stable overexpression of A2B1 in ET-sensitive MCF-7 cells (MCF-7-A2B1), results in ET resistance, …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Role Of Mir-29b-1 And Mir-29a In Endocrine-Resistant Breast Cancer., Penn Muluhngwi May 2017

Role Of Mir-29b-1 And Mir-29a In Endocrine-Resistant Breast Cancer., Penn Muluhngwi

Electronic Theses and Dissertations

Therapies targeting estrogen receptor α (ERα) including selective estrogen receptor modulators (SERMs), e.g., tamoxifen (TAM); selective estrogen receptor downregulators (SERDs), e.g., fulvestrant (ICI 182,780); and aromatase inhibitors (AI), e.g., letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited as ~ 40% of breast cancer patients will eventually acquire resistance to them. The role of miRNAs in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This dissertation begins with a review on miRNAs implicated …


Identification Of Epithelial Stromal Interaction 1 And Epidermal Growth Factor Receptor As Novel Kruppel-Like Factor 8 Targets In Promoting Breast Cancer Progression, Tianshu Li Jan 2013

Identification Of Epithelial Stromal Interaction 1 And Epidermal Growth Factor Receptor As Novel Kruppel-Like Factor 8 Targets In Promoting Breast Cancer Progression, Tianshu Li

Electronic Theses and Dissertations

Breast cancer is the major cause of cancer death among women worldwide. Understanding the mechanisms underlying breast cancer progression remains urgent for developing effective treatment strategies to eliminate breast cancer mortality. Our recent studies have demonstrated that Krüppel-like transcriptional factor 8 (KLF8) plays a critical role for breast cancer progression. Other studies have shown that Epithelial stromal interaction 1 (EPSTI1), a recently identified stromal fibroblast-induced gene in non-invasive breast cancer cells and epidermal growth factor receptor (EGFR) are highly overexpressed in aggressively invasive breast carcinomas including triple negative breast cancers. In this thesis project, we demonstrate high co-overexpression of KLF8 …


Use Of Cerium Oxide Nanoparticles For Protection Against Radiation-Induced Cell Death, Jimmie Colon Jan 2006

Use Of Cerium Oxide Nanoparticles For Protection Against Radiation-Induced Cell Death, Jimmie Colon

Electronic Theses and Dissertations

The ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Rat astrocytes were treated with cerium oxide nanoparticles to a final concentration of 10 nanomolar, irradiated with a single 10 Gy dose of ionizing radiation and cell death was evaluated by propidium iodine uptake at 24 and 48 hours after radiation insult. Treatment of rat astrocytes with nanoceria resulted in an approximate 3-fold decrease in radiation induced death. These results suggest that the nanoceria are conferring protection from radiation induced cell death. Further experiments with human cells were conducted. Human normal and tumor cells (MCF-7 and CRL8798) were …