Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structure–Function Studies Of The Yeast Saccharomyces Cerevisiae Α–Mating Factor Pheromone Receptor Ste2p, Ayça Akal–Strader Dec 2004

Structure–Function Studies Of The Yeast Saccharomyces Cerevisiae Α–Mating Factor Pheromone Receptor Ste2p, Ayça Akal–Strader

Doctoral Dissertations

G protein–coupled receptors (GPCRs) are seven transmembrane domain cell surface proteins that respond to a variety of environmental cues. Response of these receptors to their cognate stimuli on the extracellular region of the cell results in a concurrent activation of a complex series of intracellular signaling pathways that prepare the cell for the required adjustments through regulation of gene expression levels. Participation of GPCRs in such intricate signal transduction pathways renders them important players in human diseases. The GPCR family of proteins therefore represents one of the largest classes of proteins to be targeted in the development of drug design …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …