Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer Nov 2011

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu Nov 2011

Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The structural fluctuations of HIV-1 protease in interaction with its substrates versus inhibitors were analyzed using the anisotropic network model. The directions of fluctuations in the most cooperative functional modes differ mainly around the dynamically key regions, i.e., the hinge axes, which appear to be more flexible in substrate complexes. The flexibility of HIV-1 protease is likely optimized for the substrates' turnover, resulting in substrate complexes being dynamic. In contrast, in an inhibitor complex, the inhibitor should bind and lock down to inactivate the active site. Protease and ligands are not independent. Substrates are also more flexible than inhibitors and …


The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet Nov 2011

The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet

Celia A. Schiffer

Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust drugs and the selection of resilient targets can lead to successful strategies for combating resistance.


Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes Nov 2011

Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes

Celia A. Schiffer

Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold …


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …


Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio Nov 2011

Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio

Celia A. Schiffer

TMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC(50)], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC(50), >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC(50) was


Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

Drug resistance is a major obstacle in modern medicine. However, resistance is rarely considered in drug development and may inadvertently be facilitated, as many designed inhibitors contact residues that can mutate to confer resistance, without significantly impairing function. Contemporary drug design often ignores the detailed atomic basis for function and primarily focuses on disrupting the target's activity, which is necessary but not sufficient for developing a robust drug. In this study, we examine the impact of drug-resistant mutations in HIV-1 protease on substrate recognition and demonstrate that most primary active site mutations do not extensively contact substrates, but are critical …


Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer Nov 2011

Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

Darunavir (DRV) is a high affinity (4.5x10(-12) M, DeltaG = -15.2 kcal/mol) HIV-1 protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 kcal/mol and 1.6 kcal/mol respectively. In this study the absolute and relative binding free energies of DRV with wild-type protease, FLAP+ and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods, respectively. Free energy decomposition elucidated that the mutations conferred resistance by distorting the active site of HIV-1 protease so that the residues that lost binding free energy were not limited to the sites …


Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor Nov 2011

Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor

Celia A. Schiffer

The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the …


The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by approximately 10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B …


Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer Nov 2011

Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer

Celia A. Schiffer

Drug resistance is an important cause of antiretroviral therapy failure in human immunodeficiency virus (HIV)-infected patients. Mutations in the protease render the virus resistant to protease inhibitors (PIs). Gag cleavage sites also mutate, sometimes correlating with resistance mutations in the protease, but their contribution to resistance has not been systematically analyzed. The present study examines mutations in Gag cleavage sites that associate with protease mutations and the impact of these associations on drug susceptibilities. Significant associations were observed between mutations in the nucleocapsid-p1 (NC-p1) and p1-p6 cleavage sites and various PI resistance-associated mutations in the protease. Several patterns were frequently …


Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay Nov 2011

Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay

Celia A. Schiffer

Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type …