Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 47

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud Nov 2011

Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud

Celia A. Schiffer

The crystal structure of human thymidylate synthase, a target for anti-cancer drugs, is determined to 3.0 A resolution and refined to a crystallographic residual of 17.8%. The structure implicates the enzyme in a mechanism for facilitating the docking of substrates into the active site. This mechanism involves a twist of approximately 180 degrees of the active site loop, pivoted around the neighboring residues 184 and 204, and implicates ordering of external, eukaryote specific loops along with the well-characterized closure of the active site upon substrate binding. The highly conserved, but eukaryote-specific insertion of twelve residues 90-101 (h117-128), and of eight …


Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson Nov 2011

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi Nov 2011

Expression, Purification, And Characterization Of Thymidylate Synthase From Lactococcus Lactis, Patricia Greene, Pak-Lam Yu, Jia Zhao, Celia Schiffer, Daniel Santi

Celia A. Schiffer

The thymidylate synthase (TS) gene from Lactococcus lactis has been highly expressed in Escherichia coli. The TS protein was purified by sequential chromatography on Q-Sepharose and phenyl-Sepharose. Six grams of cell pellet yielded 140 mg of homogeneous TS. TS is a highly conserved enzyme, and several of the conserved amino acid residues that have been implicated in catalytic function are altered in L. lactis TS. By use of a 3-dimensional homology model, we have predicted covariant changes that might compensate for these differences. With the large amounts of L. lactis TS now available, studies can be pursued to understand the …


Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred Van Gunsteren, Richard Ernst Nov 2011

Investigations Of Peptide Hydration Using Nmr And Molecular Dynamics Simulations: A Study Of Effects Of Water On The Conformation And Dynamics Of Antamanide, Jeffrey Peng, Celia Schiffer, Ping Xu, Wilfred Van Gunsteren, Richard Ernst

Celia A. Schiffer

The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 mgrs at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight …


Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana Nov 2011

Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana

Celia A. Schiffer

Here, we describe the design, synthesis, and biological evaluation of novel HIV-1 protease inhibitors incorporating N-phenyloxazolidinone-5-carboxamides into the (hydroxyethylamino)sulfonamide scaffold as P2 ligands. Series of inhibitors with variations at the P2 phenyloxazolidinone and the P2' phenylsulfonamide moieties were synthesized. Compounds with the (S)-enantiomer of substituted phenyloxazolidinones at P2 show highly potent inhibitory activities against HIV-1 protease. The inhibitors possessing 3-acetyl, 4-acetyl, and 3-trifluoromethyl groups at the phenyl ring of the oxazolidinone fragment are the most potent in each series, with K(i) values in the low picomolar (pM) range. The electron-donating groups 4-methoxy and 1,3-dioxolane are preferred at P2' phenyl ring, …


The Role Of Protein-Solvent Interactions In Protein Unfolding, Celia Schiffer, Volker Dötsch Nov 2011

The Role Of Protein-Solvent Interactions In Protein Unfolding, Celia Schiffer, Volker Dötsch

Celia A. Schiffer

Protein unfolding occurs when the balance of forces between the protein's interaction with itself and the protein's interaction with its environment is disrupted. The disruption of this balance of forces may be as simple as a perturbance of the normal water structure around the protein. A decrease in the normal water-water interaction will result in an increase in the relative interaction of water with the protein. An increase in the number of interactions between water and the protein may initiate a protein's unfolding. This model for protein unfolding is supported by a range of recent experimental and computational data.


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer Nov 2011

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia Mcgrew, Melissa Calmann, Celia Schiffer, Kendall Knight Nov 2011

Reca Dimers Serve As A Functional Unit For Assembly Of Active Nucleoprotein Filaments, Anthony Forget, Michelle Kudron, Dharia Mcgrew, Melissa Calmann, Celia Schiffer, Kendall Knight

Celia A. Schiffer

All RecA-like recombinase enzymes catalyze DNA strand exchange as elongated filaments on DNA. Despite numerous biochemical and structural studies of RecA and the related Rad51 and RadA proteins, the unit oligomer(s) responsible for nucleoprotein filament assembly and coordinated filament activity remains undefined. We have created a RecA fused dimer protein and show that it maintains in vivo DNA repair and LexA co-protease activities, as well as in vitro ATPase and DNA strand exchange activities. Our results support the idea that dimeric RecA is an important functional unit both for assembly of nucleoprotein filaments and for their coordinated activity during the …


Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, …


Accounting For Molecular Mobility In Structure Determination Based On Nuclear Magnetic Resonance Spectroscopic And X-Ray Diffraction Data, Wilfred Van Gunsteren, Roger Brunne, P. Gros, René Van Schaik, Celia Schiffer, Andrew Torda Nov 2011

Accounting For Molecular Mobility In Structure Determination Based On Nuclear Magnetic Resonance Spectroscopic And X-Ray Diffraction Data, Wilfred Van Gunsteren, Roger Brunne, P. Gros, René Van Schaik, Celia Schiffer, Andrew Torda

Celia A. Schiffer

No abstract provided.


Substrate Specificity In Hiv-1 Protease By A Biased Sequence Search Method, Nevra Ozer, Turkan Haliloglu, Celia Schiffer Nov 2011

Substrate Specificity In Hiv-1 Protease By A Biased Sequence Search Method, Nevra Ozer, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Drug resistance in HIV-1 protease can also occasionally confer a change in the substrate specificity. Through the use of computational techniques, a relationship can be determined between the substrate sequence and three-dimensional structure of HIV-1 protease, and be utilized to predict substrate specificity. In this study, we introduce a biased sequence search threading (BSST) methodology to analyze the preferences of substrate positions and correlations between them that might also identify which positions within known substrates can likely tolerate sequence variability and which cannot. The potential sequence space was efficiently explored using a low-resolution knowledge-based scoring function. The low-energy substrate sequences …


Additivity In The Analysis And Design Of Hiv Protease Inhibitors, Robert Jorissen, G. S. Kiran Kumar Reddy, Akbar Ali, Michael Altman, Sripriya Chellappan, Saima Anjum, Bruce Tidor, Celia Schiffer, Tariq Rana, Michael Gilson Nov 2011

Additivity In The Analysis And Design Of Hiv Protease Inhibitors, Robert Jorissen, G. S. Kiran Kumar Reddy, Akbar Ali, Michael Altman, Sripriya Chellappan, Saima Anjum, Bruce Tidor, Celia Schiffer, Tariq Rana, Michael Gilson

Celia A. Schiffer

We explore the applicability of an additive treatment of substituent effects to the analysis and design of HIV protease inhibitors. Affinity data for a set of inhibitors with a common chemical framework were analyzed to provide estimates of the free energy contribution of each chemical substituent. These estimates were then used to design new inhibitors whose high affinities were confirmed by synthesis and experimental testing. Derivations of additive models by least-squares and ridge-regression methods were found to yield statistically similar results. The additivity approach was also compared with standard molecular descriptor-based QSAR; the latter was not found to provide superior …


Insights Into Interferon Regulatory Factor Activation From The Crystal Structure Of Dimeric Irf5, Weijun Chen, Suvana Lam, Hema Srinath, Zhaozhao Jiang, John Correia, Celia Schiffer, Katherine Fitzgerald, Kai Lin, William Royer Nov 2011

Insights Into Interferon Regulatory Factor Activation From The Crystal Structure Of Dimeric Irf5, Weijun Chen, Suvana Lam, Hema Srinath, Zhaozhao Jiang, John Correia, Celia Schiffer, Katherine Fitzgerald, Kai Lin, William Royer

Celia A. Schiffer

Interferon regulatory factors (IRFs) are essential in the innate immune response and other physiological processes. Activation of these proteins in the cytoplasm is triggered by phosphorylation of serine and threonine residues in a C-terminal autoinhibitory region, which stimulates dimerization, transport into the nucleus, assembly with the coactivator CBP/p300 and initiation of transcription. The crystal structure of the transactivation domain of pseudophosphorylated human IRF5 strikingly reveals a dimer in which the bulk of intersubunit interactions involve a highly extended C-terminal region. The corresponding region has previously been shown to block CBP/p300 binding to unphosphorylated IRF3. Mutation of key interface residues supports …


Crystal Structure Of The Apobec3g Catalytic Domain Reveals Potential Oligomerization Interfaces., Shivender Shandilya, Madhavi Nalam, Ellen Nalivaika, Phillip Gross, Johnathan Valesano, Keisuke Shindo, Ming Li, Mary Munson, William Royer, Elena Harjes, Takahide Kono, Hiroshi Matsuo, Reuben Harris, Mohan Somasundaran, Celia Schiffer Nov 2011

Crystal Structure Of The Apobec3g Catalytic Domain Reveals Potential Oligomerization Interfaces., Shivender Shandilya, Madhavi Nalam, Ellen Nalivaika, Phillip Gross, Johnathan Valesano, Keisuke Shindo, Ming Li, Mary Munson, William Royer, Elena Harjes, Takahide Kono, Hiroshi Matsuo, Reuben Harris, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

APOBEC3G is a DNA cytidine deaminase that has antiviral activity against HIV-1 and other pathogenic viruses. In this study the crystal structure of the catalytically active C-terminal domain was determined to 2.25 A. This structure corroborates features previously observed in nuclear magnetic resonance (NMR) studies, a bulge in the second beta strand and a lengthening of the second alpha helix. Oligomerization is postulated to be critical for the function of APOBEC3G. In this structure, four extensive intermolecular interfaces are observed, suggesting potential models for APOBEC3G oligomerization. The structural and functional significance of these interfaces was probed by solution NMR and …


How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with …


Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes Nov 2011

Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes

Celia A. Schiffer

Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold …


Inclusion Of Solvation Free Energy With Molecular Mechanics Energy: Alanyl Dipeptide As A Test Case, Celia Schiffer, James Caldwell, Robert Stroud, Peter Kollman Nov 2011

Inclusion Of Solvation Free Energy With Molecular Mechanics Energy: Alanyl Dipeptide As A Test Case, Celia Schiffer, James Caldwell, Robert Stroud, Peter Kollman

Celia A. Schiffer

A combined force field of molecular mechanics and solvation free energy is tested by carrying out energy minimization and molecular dynamics on several conformations of the alanyl dipeptide. Our results are qualitatively consistent with previous experimental and computational studies, in that the addition of solvation energy stabilizes the C5 conformation of the alanyl dipeptide relative to the C7.


Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile …


Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross Nov 2011

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that …


Protein Structure Prediction With A Combined Solvation Free Energy-Molecular Mechanics Force Field, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud Nov 2011

Protein Structure Prediction With A Combined Solvation Free Energy-Molecular Mechanics Force Field, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud

Celia A. Schiffer

Models of protein structure are frequently used to determine the physical characteristics of a protein when the crystal structure is not available. We developed a procedure to optimize such models, by use of a combined solvation free energy and molecular mechanics force field. Appropriately chosen atomic solvation parameters were defined using the criterion that the resulting protein model should deviate least from the crystal structure upon a forty picosecond molecular dynamics simulation carried out using the combined force field. Several tests were performed to refine the set of atomic solvation parameters which best complement the molecular mechanics forces. Four sets …


N88d Facilitates The Co-Occurrence Of D30n And L90m And The Development Of Multidrug Resistance In Hiv Type 1 Protease Following Nelfinavir Treatment Failure, Yumi Mitsuya, Mark Winters, W. Jeffrey Fessel, Soo-Yon Rhee, Leo Hurley, Michael Horberg, Celia Schiffer, Andrew Zolopa, Robert Shafer Nov 2011

N88d Facilitates The Co-Occurrence Of D30n And L90m And The Development Of Multidrug Resistance In Hiv Type 1 Protease Following Nelfinavir Treatment Failure, Yumi Mitsuya, Mark Winters, W. Jeffrey Fessel, Soo-Yon Rhee, Leo Hurley, Michael Horberg, Celia Schiffer, Andrew Zolopa, Robert Shafer

Celia A. Schiffer

Nelfinavir was once one of the most commonly used protease inhibitors (PIs). To investigate the genetic mechanisms of multidrug resistance in protease isolates with the primary nelfinavir resistance mutation D30N, we analyzed patterns of protease mutations in 582 viruses with D30N from 460 persons undergoing HIV-1 genotypic resistance testing at Stanford University Hospital from 1997 to 2005. Three patterns of mutational associations were identified. First, D30N was positively associated with N88D but negatively associated with N88S. Second, D30N and L90M were negatively associated except in the presence of N88D, which facilitated the co-occurrence of D30N and L90M. Third, D30N+N88D+L90M formed …


Cooperative Fluctuations Of Unliganded And Substrate-Bound Hiv-1 Protease: A Structure-Based Analysis On A Variety Of Conformations From Crystallography And Molecular Dynamics Simulations, Nese Kurt, Walter Scott, Celia Schiffer, Turkan Haliloglu Nov 2011

Cooperative Fluctuations Of Unliganded And Substrate-Bound Hiv-1 Protease: A Structure-Based Analysis On A Variety Of Conformations From Crystallography And Molecular Dynamics Simulations, Nese Kurt, Walter Scott, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The dynamics of HIV-1 protease, both in unliganded and substrate-bound forms have been analyzed by using an analytical method, Gaussian network model (GNM). The method is applied to different conformations accessible to the protein backbone in the native state, observed in crystal structures and snapshots from fully atomistic molecular dynamics (MD) simulation trajectories. The modes of motion obtained from GNM on different conformations of HIV-1 protease are conserved throughout the MD simulations. The flaps and 40's loop of the unliganded HIV-1 protease structure are identified as the most mobile regions. However, in the liganded structure these flaps lose mobility, and …


Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson Nov 2011

Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson

Celia A. Schiffer

There is a clinical need for HIV protease inhibitors that can evade resistance mutations. One possible approach to designing such inhibitors relies upon the crystallographic observation that the substrates of HIV protease occupy a rather constant region within the binding site. In particular, it has been hypothesized that inhibitors which lie within this region will tend to resist clinically relevant mutations. The present study offers the first prospective evaluation of this hypothesis, via computational design of inhibitors predicted to conform to the substrate envelope, followed by synthesis and evaluation against wild-type and mutant proteases, as well as structural studies of …


Simultaneous Refinement Of The Structure Of Bpti Against Nmr Data Measured In Solution And X-Ray Diffraction Data Measured In Single Crystals, Celia Schiffer, Robert Huber, Kurt Wuthrich, Wilfred Van Gunsteren Nov 2011

Simultaneous Refinement Of The Structure Of Bpti Against Nmr Data Measured In Solution And X-Ray Diffraction Data Measured In Single Crystals, Celia Schiffer, Robert Huber, Kurt Wuthrich, Wilfred Van Gunsteren

Celia A. Schiffer

The structure of the bovine pancreatic trypsin inhibitor (BPTI) has been determined to high resolution by both NMR spectroscopy in solution and X-ray diffraction in crystals. The root-mean-square difference calculated between the two structures for the polypeptide backbone is 0.9 A. Several amino acid side-chains, of which all but one are charged or polar, have different conformations. We find that by refining one structure simultaneously against both the NMR and crystallographic data sets, it can accommodate both. Different starting configurations were used, including the X-ray structure 5pti, an NMR conformer, and the X-ray structure in the full unit cell with …


Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor Nov 2011

Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable …


Design And Synthesis Of Hiv-1 Protease Inhibitors Incorporating Oxazolidinones As P2/P2' Ligands In Pseudosymmetric Dipeptide Isosteres, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Robin Nathans, Celia Schiffer, Tariq Rana Nov 2011

Design And Synthesis Of Hiv-1 Protease Inhibitors Incorporating Oxazolidinones As P2/P2' Ligands In Pseudosymmetric Dipeptide Isosteres, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Robin Nathans, Celia Schiffer, Tariq Rana

Celia A. Schiffer

A series of novel HIV-1 protease inhibitors based on two pseudosymmetric dipeptide isosteres have been synthesized and evaluated. The inhibitors were designed by incorporating N-phenyloxazolidinone-5-carboxamides into the hydroxyethylene and (hydroxyethyl)hydrazine dipeptide isosteres as P2 and P2' ligands. Compounds with (S)-phenyloxazolidinones attached at a position proximal to the central hydroxyl group showed low nM inhibitory activities against wild-type HIV-1 protease. Selected compounds were further evaluated for their inhibitory activities against a panel of multidrug-resistant protease variants and for their antiviral potencies in MT-4 cells. The crystal structures of lopinavir (LPV) and two new inhibitors containing phenyloxazolidinone-based ligands in complex with wild-type …


Structural Stability Of Disulfide Mutants Of Basic Pancreatic Trypsin Inhibitor: A Molecular Dynamics Study, Celia Schiffer, Wilfred Van Gunsteren Nov 2011

Structural Stability Of Disulfide Mutants Of Basic Pancreatic Trypsin Inhibitor: A Molecular Dynamics Study, Celia Schiffer, Wilfred Van Gunsteren

Celia A. Schiffer

The structure and folding of basic pancreatic trypsin inhibitor (BPTI) has been studied extensively by experimental means. We report a computer simulation study of the structural stability of various disulfide mutants of BPTI, involving eight 250-psec molecular dynamics simulations of the proteins in water, with and without a phosphate counterion. The presence of the latter alters the relative stability of the single disulfide species [5-55] and [30-51]. This conclusion can explain results of mutational studies and the conservation of residues in homologues of BPTI, and suggests a possible role of ions in stabilizing one intermediate over another in unfolding or …


Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff Nov 2011

Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff

Celia A. Schiffer

The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type …


Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

Drug resistance is a major obstacle in modern medicine. However, resistance is rarely considered in drug development and may inadvertently be facilitated, as many designed inhibitors contact residues that can mutate to confer resistance, without significantly impairing function. Contemporary drug design often ignores the detailed atomic basis for function and primarily focuses on disrupting the target's activity, which is necessary but not sufficient for developing a robust drug. In this study, we examine the impact of drug-resistant mutations in HIV-1 protease on substrate recognition and demonstrate that most primary active site mutations do not extensively contact substrates, but are critical …


Time-Averaging Crystallographic Refinement: Possibilities And Limitations Using Alpha-Cyclodextrin As A Test System, Celia A. Schiffer, P. Gros, Wilfred F. Van Gunsteren Nov 2011

Time-Averaging Crystallographic Refinement: Possibilities And Limitations Using Alpha-Cyclodextrin As A Test System, Celia A. Schiffer, P. Gros, Wilfred F. Van Gunsteren

Celia A. Schiffer

The method of time-averaging crystallographic refinement is assessed using a small molecule, alpha-cyclodextrin, as a test system. A total of 16 refinements are performed on simulated data. Three resolution ranges of the data are used, the memory relaxation time of the averaging is varied, and several overall temperature factors are used. The most critical factor in the reliable application of time-averaging is the resolution of the data. The ratio of data to molecular degrees of freedom should be large enough to avoid overfitting of the data by the time-averaging procedure. The use of a free R-factor can aid in determining …