Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

In Vitro Toxicological Evaluation Of Mesoporous Silica Microparticles Functionalised 1 With Carvacrol And Thymol, Cristina Fuentes, Ana Fuentes, Hugh Byrne, José Barat, María José Ruiz Feb 2022

In Vitro Toxicological Evaluation Of Mesoporous Silica Microparticles Functionalised 1 With Carvacrol And Thymol, Cristina Fuentes, Ana Fuentes, Hugh Byrne, José Barat, María José Ruiz

Articles

The cytotoxicity of carvacrol- and thymol- functionalised mesoporous silica microparticles (MCM-41) was assessed in the human hepatocarcinoma cell line (HepG2). Cell viability, lactate dehydrogenase (LDH) activity, reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), lipid peroxidation (LPO) and apoptosis/necrosis analysis were used as endpoints. Results showed that both materials induced cytotoxicity in a time and concentration-dependent manner, being more cytotoxic than free essential oil components and bare MCM-41. This effect was caused by the cell-particle interactions and not from degradation products released to the culture media, as demonstrated in the extract dilution assays. LDH release was seen to be …


Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne Jun 2016

Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne

Articles

The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly (amidoamine) dendrimers generation 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-Buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifest as increased levels of reactive oxygen species, monitored using the …


Raman Micro-Spectroscopy For Rapid Screening Of Oral Squamous Cell Carcinoma, Luis Felipe Carvalho, Franck Bonnier, Kate O'Callaghan, Jeff O'Sullivan, Stephen Flint, Hugh Byrne, Fiona Lyng Jan 2015

Raman Micro-Spectroscopy For Rapid Screening Of Oral Squamous Cell Carcinoma, Luis Felipe Carvalho, Franck Bonnier, Kate O'Callaghan, Jeff O'Sullivan, Stephen Flint, Hugh Byrne, Fiona Lyng

Articles

Raman spectroscopy can provide a molecular-level fingerprint of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for dysplasia and early, non-invasive cancer diagnosis (carcinoma in situ), both ex-vivo and in vivo. In this study, we demonstrate this potential by collecting Raman spectra of nucleoli, nuclei and cytoplasm from oral epithelial cancer (SCC- 4) and dysplastic (pre-cancerous, DOK) cell lines and from normal oral epithelial primary cell cultures, in vitro, which were then analysed by principal component analysis (PCA) as a multivariate statistical method to discriminate the spectra. Results …


Numerical Simulations Of In Vitro Nanoparticle Toxicity – The Case Of Poly(Amido Amine) Dendrimers., Marcus Maher, Pratap Naha, Sourav Prasanna Mukherjee, Hugh Byrne Dec 2014

Numerical Simulations Of In Vitro Nanoparticle Toxicity – The Case Of Poly(Amido Amine) Dendrimers., Marcus Maher, Pratap Naha, Sourav Prasanna Mukherjee, Hugh Byrne

Articles

A phenomenological rate equation model is constructed to numerically simulate nanoparticle uptake and subsequent cellular response. Polyamidoamine dendrimers (generations 4-6) are modelled and the temporal evolution of the intracellular cascade of; increased levels of reactive oxygen species, intracellular antioxidant species, caspase activation, mitochondrial membrane potential decay, tumour necrosis factor and interleukin generation is simulated, based on experimental observations.

The dose and generation dependence of several of these response factors are seen to well represent experimental observations at a range of time points. The model indicates that variations between responses of different cell-lines, including murine macrophages, human keratinocytes and colon cells, …


The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch Jan 2013

The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch

Articles

In biological media, nanoparticles acquire a coating of biomolecules (proteins, lipids, polysaccharides) from their surroundings, which reduces their surface energy and confers a biological identity to the particles. This adsorbed layer is the interface between the nanomaterial and living systems and therefore plays a significant role in determining the fate and behaviour of the nanoparticles. This review summarises the state of the art in terms of understanding the bio-nano interface and provides direction for potential future research directions and some recommendations for future priorities and strategies to support the safe implementation of nanotechnologies. The central premise is that nanomaterials must …