Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou Dec 2023

The Identification Of Small Molecule Inhibitors To Candida Albicans Phosphatidylserine Synthase, Yue Zhou

Doctoral Dissertations

Candida albicans phosphatidylserine (PS) synthase, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis due to its importance in virulence, absence in the host and conservation among fungal pathogens. This dissertation is focused on the identification of inhibitors for this membrane enzyme. Cho1 has two substrates: cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine. Previous studies identified a conserved CDP-alcohol phosphotransferase (CAPT) binding motif present within Cho1, and here we revealed that mutations in all but one conserved amino acid within the CAPT motif resulted in decreased Cho1. For serine, we have predicted a …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Cell-Free Metabolic Engineering Strategies For Accelerated Biomanufacturing, Jaime Lorenzo N. Dinglasan May 2023

Cell-Free Metabolic Engineering Strategies For Accelerated Biomanufacturing, Jaime Lorenzo N. Dinglasan

Doctoral Dissertations

Biomanufacturing propels the bioeconomy. Accelerating bioeconomic growth thus requires the expedited development of biomanufacturing processes that can expand the current bioproduct portfolio. Lysate-based cell-free systems provide unique advantages for simplified metabolic pathway construction. Their central metabolic pathways and transcriptional-translational (TX-TL) machineries are free from genome regulation and are amenable to direct manipulation, enabling the streamlined construction of biomanufacturing processes. While their utility as prototyping platforms for accelerating cellular metabolic engineering has been demonstrated, the potential to rapidly build commercial “cell-free factories” capable of sophisticated bioconversion has not been fully realized. Lysates with high-yield pathways are projected to enable commercialized cell-free …


The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman May 2023

The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman

Doctoral Dissertations

Integral membrane proteins are prolific targets for the design, development, and delivery of pharmaceuticals. In fact, over 60% of all currently available drugs target these proteins to accomplish their therapeutic effect. However, integral membrane proteins remain the least characterized class of all proteins, accounting for only ~2% of all solved protein structures. One of the primary reasons for this low number of solved protein structures is that many membrane proteins lose their native conformation when extracted using conventional methods (e.g. detergents), convoluting accurate structure determination. In contrast, amphiphilic styrene-maleic acid copolymers (SMAs) were recently discovered to readily isolate membrane proteins …