Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Department of Biochemistry: Dissertations, Theses, and Student Research

Chlamydomonas

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Making Chlamydomonas Reinhardtii A Better Model Organism: Tackling The Inefficiency Of Nuclear Transgene Expression And Improving Methods For The Generation And Characterization Of Insertional Mutant Libraries, Thomas M. Plucinak Dec 2013

Making Chlamydomonas Reinhardtii A Better Model Organism: Tackling The Inefficiency Of Nuclear Transgene Expression And Improving Methods For The Generation And Characterization Of Insertional Mutant Libraries, Thomas M. Plucinak

Department of Biochemistry: Dissertations, Theses, and Student Research

The green algal species Chlamydomonas reinhardtii possesses many beneficial features that have made it a useful model organism for many decades. Many types of experimentation however are difficult to conduct with this organism due to the relative under-development of genetic tools available for use. Tasks such as transgene expression, overexpression of proteins of interest (POIs) or site specific genomic modification that are routine in other more facile microbial model organisms such as Escherichia coli and yeast are difficult to accomplish in C. reinhardtii. The second chapter of this thesis describes the development of a novel nuclear transgene expression system …


Transcriptomic Analyses Of The Co2-Concentrating Mechanisms And Development Of Molecular Tools For Chlamydomonas Reinhardtii, Andrew J. Brueggeman Dec 2013

Transcriptomic Analyses Of The Co2-Concentrating Mechanisms And Development Of Molecular Tools For Chlamydomonas Reinhardtii, Andrew J. Brueggeman

Department of Biochemistry: Dissertations, Theses, and Student Research

Microalgae, such as Chlamydomonas reinhardtii, account for a large percentage of photosynthesis that occurs on the planet. Many algae possess a Carbon-Concentrating Mechanism, or CCM, that actively transports inorganic carbon (Ci) into the cell to create artificially high internal levels of CO2, enhancing their rate of carbon fixation. The production of biofuels from algal sources can serve as both a renewable and carbon-neutral energy source. This thesis details research in Chlamydomonas, in the effort to both better understand the CCM in algae and improve laboratory and industrial manipulations with algae.

In the first chapter of this …


Phylogenetic Engineering Of The Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit In Chlamydomonas Reinhardtii, Boon Hoe Lim Nov 2012

Phylogenetic Engineering Of The Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit In Chlamydomonas Reinhardtii, Boon Hoe Lim

Department of Biochemistry: Dissertations, Theses, and Student Research

Thirty-four residues in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) may account for the kinetic differences between Rubisco enzyme from green algae and land plants. By substituting these "phylogenetic residues" as groups and combinations of groups in the large subunit of the green alga Chlamydomonas reinhardtii with those of land-plant Rubisco, the functions and relationships of these "phylogenetic groups" were determined.

A phylogenetic-group substitution at the base of catalytic loop 6 of the large subunit decreases the CO2/O2 specificity of the enzyme, but function is restored by a further phylogenetic-group substitution at the carboxy-terminal tail. Therefore, these …


Studies On The Small Ubiquitin-Like Modifier (Sumo) E2 Conjugases Of The Sumoylation System In Chlamydomonas Reinhardtii And Their Role In Stress Physiology, Amy R. Knobbe Apr 2012

Studies On The Small Ubiquitin-Like Modifier (Sumo) E2 Conjugases Of The Sumoylation System In Chlamydomonas Reinhardtii And Their Role In Stress Physiology, Amy R. Knobbe

Department of Biochemistry: Dissertations, Theses, and Student Research

The eukaryotic protein post-translational modification by SUMOylation is involved in a diverse array of cellular processes, including various stress responses. A fully functional SUMOylation system is present in the unicellular green alga Chlamydomonas reinhardtii, and SUMOylation of multiple high molecular weight proteins is induced in response to abiotic stress in this organism. We report here the characterization of a SUMO E2 conjugase deletion mutant in C. reinhardtii, mut5. SUMO E2 conjugase enzymes are responsible for the conjugation of the protein SUMO to a lysine residue within a target protein. C. reinhardtii mutants in which the SUMO E2 …