Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 169

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson Jan 2023

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus (NNSV) that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. Despite the initial identification of HMPV in 2001, there are currently no FDA approved antivirals or vaccines available. Therefore, understanding the mechanism of HMPV replication is critical for the identification of novel therapeutic targets. A key feature in the replication cycle of HMPV and other NNSVs is the formation of membrane-less, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). Recent work on NNSV IBs suggests they display characteristics of biomolecular condensates formed …


The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith Jan 2023

The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein Tyrosine Phosphatase 4A3 (PTP4A3 or PRL-3) is an oncogenic dual-specificity phosphatase that drives tumor metastasis, promotes cancer cell survival, and is correlated with poor patient prognosis in a variety of solid tumors and leukemias. The mechanisms that drive PRL-3’s oncogenic functions are not well understood, in part due to a lack of research tools available to study this protein. The development of such tools has proven difficult, as the PRL family is ~80% homologous and the PRL catalytic binding pocket is shallow and hydrophobic. Currently available small molecules do not exhibit binding specificity for PRL-3 over PRL family members, …


A Characterization Of Key Residues In Class I Viral Fusion Proteins Important For Fusogenic Activity, Hadley E. Neal Jan 2023

A Characterization Of Key Residues In Class I Viral Fusion Proteins Important For Fusogenic Activity, Hadley E. Neal

Theses and Dissertations--Molecular and Cellular Biochemistry

Viral fusion proteins are critical for viral entry and subsequent infection. Class I fusion proteins are characterized by synthesis as an inactive precursor requiring cleavage by a host cell protease to become fusion competent. Though vaccine and antiviral therapeutic developments often target the fusion protein, questions surrounding cleavage dynamics and protein stability remain. The work presented in this dissertation investigates specific regions of three class I viral fusion proteins in an effort to identify key residues involved in proteolytic processing and membrane fusion.

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) mediates receptor binding, facilitates fusion …


Developing A Biocatalytic Toolbox To Aid In Understanding Nucleoside Antibiotics, Jasmine Brianna Woods Jan 2023

Developing A Biocatalytic Toolbox To Aid In Understanding Nucleoside Antibiotics, Jasmine Brianna Woods

Theses and Dissertations--Pharmacy

Antibiotic resistance happens when bacteria develop the ability to survive medications that normally terminate them. Instead, these super germs are able to survive in the body and produce a community of antibiotic resistance germs which can cause human fatalities. It is important to discover and develop new compounds and molecules that will improve this clinical obstacle. This research focused on analyzing the biosynthesis that incorporates distinctive chemical characteristic of various nucleoside antibiotics, ß-hydroxy amino acids and α-methyl-amino acids. ß-hydroxy amino acids and α-methyl-amino acids are considered an important class of industrially useful compounds, particularly for pharmaceutical development, and are found …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Rnai-Mediated Gene Silencing In The Exotic Redbay Ambrosia Beetle, Xyleborus Glabratus, And Insect-Fungal Interactions Within The Laurel Wilt Complex, Morgan Christine Knutsen Jan 2023

Rnai-Mediated Gene Silencing In The Exotic Redbay Ambrosia Beetle, Xyleborus Glabratus, And Insect-Fungal Interactions Within The Laurel Wilt Complex, Morgan Christine Knutsen

Theses and Dissertations--Entomology

Laurel wilt disease (LWD) is a lethal vascular disease impacting lauraceous hosts caused by Harringtonia lauricola, the fungal symbiont of the redbay ambrosia beetle (Xyleborus glabratus Eichoff) (RAB) (Coleoptera: Curculionidae). LWD has caused tree mortality throughout the southeastern United States and is continuing to spread into new regions. Current management methods have not been successful in preventing spread, warranting investigation into innovative techniques including RNA interference (RNAi).

Elongation factor-1 alpha (ef1a) and actin (act) were established as stably expressed reference genes after exposing beetles to different photoperiod, temperature, and dsRNA exposure. After RAB oral …


Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Plant Cell Wall Composition And In Vitro Fermentation Characteristics Of Cool-Season Forage Grasses From Two Growing Seasons In Central Kentucky, Sophia Danielle Newhuis Jan 2023

Plant Cell Wall Composition And In Vitro Fermentation Characteristics Of Cool-Season Forage Grasses From Two Growing Seasons In Central Kentucky, Sophia Danielle Newhuis

Theses and Dissertations--Animal and Food Sciences

Grass cell walls are rich in cellulose, hemicellulosic arabinoxylan (AX) polysaccharides, and lignin. AX structural differences such as degree and pattern of branching and the ester-linked phenolic acid content could affect plants’ digestibility when used as forage for livestock. However, there is little information about how these structural elements change over the growing season in the vegetative tissue of cool-season perennial grasses. Enhanced information about the cell wall composition and carbohydrate structure of forage material will provide a foundation for expanding our knowledge of how forage cell wall carbohydrate structures are utilized by ruminants. The objectives of this study were …


A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy Jan 2022

A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy

Theses and Dissertations--Molecular and Cellular Biochemistry

Toxoplasma gondii is an opportunistic, protozoan parasite of all warm-blooded animals, infecting roughly one-third of humans worldwide. Humans acquire infections by consuming T. gondii tissue cysts in undercooked meat or from oocysts shed in cat feces. Encysted parasites convert into rapidly growing tachyzoites that disseminate throughout the body, defining the acute phase of infection. Under host immune pressure, tachyzoites convert into bradyzoites that populate tissue cysts found in CNS or muscle tissue and persist for the lifetime of the host, defining the chronic phase of infection. Tissue cysts are responsible for transmission via carnivory, but also possess the ability to …


Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck Jan 2022

Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck

Theses and Dissertations--Pharmacy

In the U.S., anxiety is recognized as an increasing range of mentally and physically debilitating psychiatric health disorders with significant economic repercussions. Over the last 20 years, several novel anti-anxiety therapies have entered the drug development pipeline, but none have made it to market.

The work in this dissertation focused on structurally modifying valerenic acid (VA), a structurally unique carboxylated sesquiterpene acid found in Valeriana officinalis. VA is putatively reported to have allosteric modulatory activity of the human GABAA receptor, a ligand-gated ion channel responsible for attenuating neurotransmissions. Structural modeling of VA’s GABAA receptor interaction suggests that …


Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras Jan 2022

Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras

Theses and Dissertations--Neuroscience

Diabetes is a complex metabolic disorder, of which high blood glucose concentration is the primary hallmark. Type I diabetes mellitus (T1DM) is characterized by the lack of insulin production, due to a poorly understood autoinflammatory cascade. In the words of historian Barnett “Diabetes may no longer be a death sentence, but for more and more people in the 21st century, it will become a life sentence”, making it the focal point of many research groups. It is estimated that around 20 million individuals worldwide live with T1DM.

Effects of long-term chronically elevated blood glucose are not only seen in micro/macro-vascular …


Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams Jan 2022

Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams

Theses and Dissertations--Physiology

Apolipoprotein E (APOE) is encoded by the APOE gene, present in humans as three main isoforms (E2, E3, and E4). E4 carriers face up to a 15-fold increased risk for developing late-onset Alzheimer’s disease (AD), while E2 carriers are protected. Understanding the risk conferred by E4 has been an extensive research focus for nearly three decades, but the exact mechanism has yet to be proven. Many studies have demonstrated attenuated roles of E4 in classical hallmarks of AD, notably amyloid processing and neurofibrillary formation, which normally present later in disease progression. How APOE influences hallmarks that present much earlier are …


Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth Jan 2022

Synthesis Of 6,6- And 7,7-Difluoro-1-Acetamidopyrrolizidines And Their Oxidation Catalyzed By The Nonheme Fe Oxygenase Lolo, Nabin Panth

Theses and Dissertations--Chemistry

One of the remarkable steps in loline alkaloid biosynthesis is the installation of an ether bridge between two unactivated C atoms in 1-exo-acetamidopyrrolizidine (AcAP). LolO, a 2-oxoglutarate-dependent nonheme Fe oxygenase, catalyzes both the hydroxylation of AcAP and the resulting alcohol's cycloetherification to give N-acetylnornoline (NANL). The mechanism of hydroxylation is well understood, but the mechanism of the oxacyclization is not. I synthesized difluorinated analogs of AcAP in an attempt to further understand the mechanism of the unusual cycloetherification step.

I prepared 6,6-F2-AcAP in eight steps from N,O-protected 4-oxoproline. The key step was a Dieckmann …


Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun Jan 2022

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun

Theses and Dissertations--Chemistry

The outer membrane of Gram-negative bacteria (GN) makes them distinct among superbugs that are associated with the development of antibiotic resistance. The outer membrane, and inner membrane, separated by the periplasm, form a double-membrane barrier to the entry of antibiotics into the cell. Several studies have been conducted to examine the role of outer membrane modifications such as porins, lipopolysaccharides, and efflux pumps on antibiotic resistance. However, there is a paucity of knowledge on how antibiotics behave in the periplasm, to gain access into their target region. My thesis focuses on understanding the mechanism of antibiotic permeability through the cellular …


Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal Jan 2022

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal

Theses and Dissertations--Chemistry

Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate. Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are non-excitable cells in the brain which do not …


Structural Basis Of Bacterial Flagellin For Naip5 Binding And Nlrc4 Inflammasome Activation And The Mechanism Of Flagellin Induced Release Of Cytokines In Vivo, Jian Cui Jan 2022

Structural Basis Of Bacterial Flagellin For Naip5 Binding And Nlrc4 Inflammasome Activation And The Mechanism Of Flagellin Induced Release Of Cytokines In Vivo, Jian Cui

Theses and Dissertations--Chemistry

The bacterial flagellum is a whip-like structure that protrudes from the cell membrane and is one of the most complex and dynamic biological molecular machines that propels bacteria to swim toward beneficial environments and the sites of infection. It is composed of a basal body, a hook, and a long filament. The flagellar filament contains thousands of copies of the protein flagellin (FliC) monomer arranged helically and ending with a filament cap composed of oligomer protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases …


Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya Jan 2022

Antibiotic Permeation In Gram-Negative Bacteria And Contribution Of Inflammasome Activation And Pyroptosis In Pathogenesis Of Salmonella Systemic Infection, Ankit Pandeya

Theses and Dissertations--Chemistry

Antibiotic resistance is one of the major global issues in the field of public health and medicine. Good antibiotic candidates need to be selectively toxic, inhibit cellular target, and effectively penetrate and accumulate in bacterial cells. The last factor is a formidable barrier in the development of antimicrobials effective in Gram-negative bacteria, due to the presence of two layers of cell envelope. The first half of my thesis focuses on understanding the permeation of small molecules through this formidable cell envelope, distribution inside the cell of Gram-negative bacteria, and design of novel methods to make small molecules effectively cross the …


The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh Jan 2022

The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh

Theses and Dissertations--Chemistry

In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins; histone in somatic nuclei and arginine-rich peptides called protamines in sperm chromatin. The packaging in the sperm nucleus is significantly higher than somatic nuclei resulting in a final volume roughly 1/20th that of a somatic nucleus. This tight packaging results in a near crystalline packaging of the DNA helices. While the dense packaging of DNA in sperm nuclei is considered essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species, …


The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull Jan 2022

The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull

Theses and Dissertations--Plant and Soil Sciences

Secondary metabolites are a broad class of specialized compounds that mediate plant-environment interactions and mitigate stress. It is increasingly clear that many phenylalanine-derived secondary metabolites are nearly indispensable for plant survival and that plants adjust their growth according to their secondary metabolic outputs. Consequently, many phenylalanine-derived secondary metabolites have influence over hormone activity. For instance, multiple phenylpropanoid intermediates and catecholamines alter the sensitivity of plants to the central hormone auxin, which in concert with cytokinin directs most aspects of plant growth and development. This dissertation reviews previous research on the influence of phenylpropanoid intermediates and catecholamines on plants, with a …


Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak Jan 2021

Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak

Theses and Dissertations--Radiation Medicine

Lung stereotactic body radiotherapy (SBRT) is a viable alternative to surgical intervention for the treatment of early-stage non-small-cell lung cancer (NSCLC) patients. This therapy achieves strong local control rates by delivering ultra-high, conformal radioablative doses in typically one to five fractions. Historically, lung SBRT plans are manually generated using 3D conformal radiation therapy, dynamic conformal arcs (DCA), intensity-modulated radiation therapy, and more recently via volumetric modulated arc therapy (VMAT) on a C-arm linear accelerator (linac). Manually planned VMAT is an advanced technique to deliver high-quality lung SBRT due to its dosimetric capabilities and utilization of flattening-filter free beams to improve …


The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo Jan 2021

The Tumor Suppressor Par-4 Regulates Hypertrophic Obesity, Nathalia Araujo

Theses and Dissertations--Toxicology and Cancer Biology

Prostate Apoptosis Response-4 (Par-4) is a tumor suppressor ubiquitously expressed in all tissues and able to selectively induce apoptosis in cancer cells. Although well established in the context of cancer, relatively little is known about the function of Par-4 in the healthy and non-tumorigenic context. Observations from our lab showed that Par-4 knockout mouse lines were obese and displayed adipocyte hypertrophy under a normal chow diet when compared to Par-4 wild-type mice. These Par-4 knockout mice exhibited hepatic steatosis and hyperinsulinemia as secondary consequences of obesity. Par-4 knockout mice displayed increased intestinal dietary fat absorption and its subsequent storage in …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs Jan 2021

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed …


Substrate Trafficking Within The Type Vii Secretion Systems Of Pathogenic Mycobacteria, Zachary A. Williamson Jan 2021

Substrate Trafficking Within The Type Vii Secretion Systems Of Pathogenic Mycobacteria, Zachary A. Williamson

Theses and Dissertations--Molecular and Cellular Biochemistry

Tuberculosis (TB), primarily caused by infection of Mycobacterium tuberculosis (Mtb) in the lungs, is the deadliest infectious bacterial disease killing 1.5 million people annually. A major determinant of virulence is active secretion through three specialized type VII secretion (ESX) systems; ESX-1, ESX-3, and ESX-5. A large group of substrates exported by the ESX systems is the PE (Proline-Glutamine) and PPE (Proline-Proline-Glutamate) families of proteins, which are highly expanded in the pathogenic species of Mycobacteria and encompass over 7% of Mtb’s genome coding capacity. PE and PPE proteins interact together to form PE-PPE heterodimers, and are secreted through …


Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado Jan 2021

Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado

Theses and Dissertations--Chemical and Materials Engineering

The world is presently faced with a sustainability crisis; it is becoming increasingly difficult to meet the energy and material needs of a growing global population without depleting and polluting our planet. Greenhouse gases released from the continuous combustion of fossil fuels engender accelerated climate change, and plastic waste accumulates in the environment. There is need for a circular economy, where energy and materials are renewably derived from waste items, rather than by consuming limited resources. Deconstruction of the recalcitrant linkages in natural and synthetic polymers is crucial for a circular economy, as deconstructed monomers can be used to manufacture …


Arabinoxylan Structural Profiling Of Cool-Season Pasture Grasses Via High-Performance Anion-Exchange Chromatography With Pulsed Amperometric Detection (Hpaec-Pad) Analysis Of Endoxylanase Digests, Glenna Erin Joyce Jan 2021

Arabinoxylan Structural Profiling Of Cool-Season Pasture Grasses Via High-Performance Anion-Exchange Chromatography With Pulsed Amperometric Detection (Hpaec-Pad) Analysis Of Endoxylanase Digests, Glenna Erin Joyce

Theses and Dissertations--Animal and Food Sciences

Arabinoxylan (AX) is a major structural polysaccharide found in the cell walls of monocots such as cereal grains and pasture grasses. The variety of AX structural components and substitution patterns contribute to AX structural diversity between different monocot species as well as plant tissues.

The rumen is the first digestion site of masticated food material in cattle and provides 70% of energy to host through fermentation of forage. There are many species of pasture grasses that act as a forage source. Differences in AX structure found in these pasture grasses may impact rumen microbial fermentation. Understanding the AX structure of …


Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz Jan 2021

Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz

Theses and Dissertations--Pharmacy

Glioblastoma is one of the deadliest cancers, with a median survival of only one year. Even after aggressive treatment consisting of surgical resection, radiation, and chemotherapy, most glioblastoma patients suffer from tumor recurrence within 6-9 months. One reason for treatment failure of anticancer drugs is the blood-brain barrier that protects the brain by impeding xenobiotic uptake from the blood. To this end, efflux transporters at the human blood-brain barrier, such as P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2), prevent many compounds, including anticancer drugs, from entering the brain. Thus far, approaches to deliver anticancer drugs across the blood-brain barrier …


Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens Jan 2021

Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens

Theses and Dissertations--Chemistry

Development of stable gold-based complexes has been a rapidly advancing field due to the popularity of gold complexes, particularly for use in biomedical research and catalytic transformations. Given that auranofin, a gold(I) complex with FDA approval for the treatment of rheumatoid arthritis is used in the clinic, the development of stable gold-based molecules of clinical relevance is urgently needed. Herein are reported, synthetic strategies used for the development of new classes of gold(I) and gold(III) complexes for advancement in mitochondrial modulation for use as chemotherapeutics as well as application to gold catalysis due to the unique geometry of complexes presented …


Interactions Of Post-Pks Enzymes Of The Mithramycin Biosynthetic Pathway, Ryan Wheeler Jan 2021

Interactions Of Post-Pks Enzymes Of The Mithramycin Biosynthetic Pathway, Ryan Wheeler

Theses and Dissertations--Pharmacy

Combinatorial biosynthesis is a powerful tool for generating new, more active drug analogues to combat disease. But in order for combinatorial biosynthesis to be employed to its full potential, a deep understanding of the enzymes that produce the parent molecule must be had. The goals of the work presented in this thesis are to characterize the reaction catalyzed by MtmW, the final enzyme in the mithramycin (MTM) biosynthetic pathway, and to discover the interaction between MtmW and MtmOIV.

MtmW is an aldol-ketoreductase responsible for reducing the most distal carbonyl on the MTM pentyl side chain. It forms an octamer that …


Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos Jan 2021

Leveraging Chemical And Computational Biology To Probe The Cellulose Synthase Complex, B. Kirtley Amos

Theses and Dissertations--Plant and Soil Sciences

Cellular expansion in plants is a complex process driven by the constraint of internal cellular turgor pressure by an expansible cell wall. The main structural element of the cell wall is cellulose. Cellulose is vital to plant fitness and the protein complex that creates it is an excellent target for small molecule inhibition to create herbicides. In the following thesis many small molecules (SMs) from a diverse library were screened in search of new cellulose biosynthesis inhibitors (CBI). Loss of cellular expansion was the primary phenotype used to search for putative CBIs. As such, this was approached in a forward …