Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

University at Albany, State University of New York

Germ cells

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Role Of Rna Helicases In The Drosophila Germline, Patrick Blatt Jan 2021

Role Of Rna Helicases In The Drosophila Germline, Patrick Blatt

Legacy Theses & Dissertations (2009 - 2024)

Gametogenesis, the process of creating egg or sperm, is required for launching successive generations of sexually reproducing organisms. The developmental milestones that occur during gamete production have been studied for decades and are of critical interest to gain insight to conserved features of human fertility. Drosophila has been used for over a century as an efficient research model and remains pivotal in uncovering fundamental biological paradigms. During Drosophila egg production, or oogenesis, several developmental transitions must be traversed to ensure completion of oogenesis including: Germline Stem Cell (GSC) maintenance and differentiation, mitotic and meiotic cell divisions, and production of maternally …


Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy Jan 2020

Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy

Legacy Theses & Dissertations (2009 - 2024)

Germ cells give rise to gametes and link generations by passing genetic information from parent to offspring. Gametes arise from, in many sexually reproducing organisms, germline stem cells (GSCs) which are set aside early during development. GSCs have an amazing capacity to undergo self-renewal to give rise to a pool of undifferentiated cells, while also differentiating to generate specialized germ cells such as haploid gametes. Upon female GSC differentiation, mitotically dividing germ cells can initiate meiosis, and mature within a follicle. During maturation, the specified oocyte is provided with a trust fund of RNAs and proteins for the next generation …


Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora Jan 2018

Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora

Legacy Theses & Dissertations (2009 - 2024)

Germ cells are the only cell in an organism that have the capacity to give rise to a new organism and are passed from one generation to the next. Therefore, to maintain this unique ability of totipotency and immortality, germ cells execute specific functions, such as, repression of a somatic program and contour a germ line-specific pre- and post-transcriptional gene regulatory landscape. In many sexually reproducing organisms, germ cells are formed during the earliest stages of embryogenesis and undergoes several stages of development to eventually get encapsulated by the somatic cells of the gonad. Once, in the gonad, the germ …


Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay Jan 2018

Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay

Legacy Theses & Dissertations (2009 - 2024)

Stem cells have the unique capability of self-renewing into stem cells and differentiating into several terminal cell types. Loss of either of these processes can lead to aging, progression towards degenerative diseases and cancers. Insight into how self-renewal and differentiation are regulated will have tremendous therapeutic impact. Drosophila is an excellent model system for stem cell study due to the availability of various mutants, markers and RNAi technology. In order to study stem cell biology, we use female Drosophila gonads, whose stem cell population – the germline stem cells (GSCs) gives rise to gametes.


Gld-1 Represses Its Puf Mrna Targets Prior To/At Initiation Of Translation In The C.Elegans Germline, Gautham Sarathy Jan 2012

Gld-1 Represses Its Puf Mrna Targets Prior To/At Initiation Of Translation In The C.Elegans Germline, Gautham Sarathy

Legacy Theses & Dissertations (2009 - 2024)

The C.elegans germline offers an ideal system to study posttranscriptional regulation of gene expression as it is a major mechanism through which the control over gene expression is achieved. GLD-1 (defective in GermLine Development) is a maxi-KH motif containing RNA binding protein that controls various aspects of germline development from decision over germcell proliferation vs. meiotic entry to the production of mature gametes suggesting that GLD-1 likely controls many mRNA targets.