Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Tethering Complex Hops Catalyzes Assembly Of The Soluble Snare Vam7 Into Fusogenic Trans-Snare Complexes, Michael Zick, William Wickner Sep 2013

The Tethering Complex Hops Catalyzes Assembly Of The Soluble Snare Vam7 Into Fusogenic Trans-Snare Complexes, Michael Zick, William Wickner

Dartmouth Scholarship

The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The …


N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner Sep 2012

N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner

Dartmouth Scholarship

SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on its …


Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole Sep 2012

Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole

Dartmouth Scholarship

The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show …


A Lipid-Anchored Snare Supports Membrane Fusion, Hao Xu, Michael Zick, William T. Wickner, Youngsoo Jun Oct 2011

A Lipid-Anchored Snare Supports Membrane Fusion, Hao Xu, Michael Zick, William T. Wickner, Youngsoo Jun

Dartmouth Scholarship

Intracellular membrane fusion requires R-SNAREs and Q-SNAREs to assemble into a four-helical parallel coiled-coil, with their hydrophobic anchors spanning the two apposed membranes. Based on the fusion properties of chemically defined SNARE- proteoliposomes, it has been proposed that the assembly of this helical bundle transduces force through the entire bilayer via the transmembrane SNARE anchor domains to drive fusion. However, an R-SNARE, Nyv1p, with a genetically engineered lipid anchor that spans half of the bilayer suffices for the fusion of isolated vacuoles, although this organelle has other R-SNAREs. To demonstrate unequivocally the fusion activity of lipid-anchored Nyv1p, we reconstituted proteoliposomes …


Requirement For Golgi-Localized Pi(4)P In Fusion Of Copii Vesicles With Golgi Compartments, Andres Lorente-Rodriguez, Charles Barlowe Nov 2010

Requirement For Golgi-Localized Pi(4)P In Fusion Of Copii Vesicles With Golgi Compartments, Andres Lorente-Rodriguez, Charles Barlowe

Dartmouth Scholarship

The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) …


Requirements For Transitional Endoplasmic Reticulum Site Structure And Function In Saccharomyces Cerevisiae, Polina Shindiapina, Charles Barlowe Feb 2010

Requirements For Transitional Endoplasmic Reticulum Site Structure And Function In Saccharomyces Cerevisiae, Polina Shindiapina, Charles Barlowe

Dartmouth Scholarship

Secretory proteins are exported from the endoplasmic reticulum (ER) at specialized regions known as the transitional ER (tER). Coat protein complex II (COPII) proteins are enriched at tER sites, although the mechanisms underlying tER site assembly and maintenance are not understood. Here, we investigated the dynamic properties of tER sites in Saccharomyces cerevisiae and probed protein and lipid requirements for tER site structure and function. Thermosensitive sec12 and sec16 mutations caused a collapse of tER sites in a manner that depended on nascent secretory cargo. Continual fatty acid synthesis was required for ER export and for normal tER site structure, …


Integral Membrane Proteins Brr6 And Apq12 Link Assembly Of The Nuclear Pore Complex To Lipid Homeostasis In The Endoplasmic Reticulum, Christine A. Hodge, Vineet Choudhary, Michael J. Wolyniak, John J. Scarcelli, Roger Schneiter, Charles N. Cole Oct 2009

Integral Membrane Proteins Brr6 And Apq12 Link Assembly Of The Nuclear Pore Complex To Lipid Homeostasis In The Endoplasmic Reticulum, Christine A. Hodge, Vineet Choudhary, Michael J. Wolyniak, John J. Scarcelli, Roger Schneiter, Charles N. Cole

Dartmouth Scholarship

Cells of Saccharomyces cerevisiae lacking Apq12, a nuclear envelope (NE)-endoplasmic reticulum (ER) integral membrane protein, are defective in assembly of nuclear pore complexes (NPCs), possibly because of defects in regulating membrane fluidity. We identified BRR6, which encodes an essential integral membrane protein of the NE-ER, as a dosage suppressor of apq12 Delta. Cells carrying the temperature-sensitive brr6-1 allele have been shown to have defects in nucleoporin localization, mRNA metabolism and nuclear transport. Electron microscopy revealed that brr6-1 cells have gross NE abnormalities and proliferation of the ER. brr6-1 cells were hypersensitive to compounds that affect membrane biophysical properties and to …


The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole Aug 2007

The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole

Dartmouth Scholarship

Although the structure and function of components of the nuclear pore complex (NPC) have been the focus of many studies, relatively little is known about NPC biogenesis. In this study, we report that Apq12 is required for efficient NPC biogenesis in Saccharomyces cerevisiae. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum. Cells lacking Apq12 are cold sensitive for growth, and a subset of their nucleoporins (Nups), those that are primarily components of the cytoplasmic fibrils of the NPC, mislocalize to the cytoplasm. APQ12 deletion also causes defects in NE morphology. In the absence of …


The Yeast Orthologue Of Grasp65 Forms A Complex With A Coiled-Coil Protein That Contributes To Er To Golgi Traffic, Rudy Behnia, Francis A. Barr, John J. Flanagan, Charles Barlowe, Sean Munro Jan 2007

The Yeast Orthologue Of Grasp65 Forms A Complex With A Coiled-Coil Protein That Contributes To Er To Golgi Traffic, Rudy Behnia, Francis A. Barr, John J. Flanagan, Charles Barlowe, Sean Munro

Dartmouth Scholarship

The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with …


Erv26p Directs Pro-Alkaline Phosphatase Into Endoplasmic Reticulum–Derived Coat Protein Complex Ii Transport Vesicles, Catherine A. Bue, Christine M. Bentivoglio, Charles Barlowe Sep 2006

Erv26p Directs Pro-Alkaline Phosphatase Into Endoplasmic Reticulum–Derived Coat Protein Complex Ii Transport Vesicles, Catherine A. Bue, Christine M. Bentivoglio, Charles Barlowe

Dartmouth Scholarship

Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Δ mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP …


A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe Oct 2003

A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe

Dartmouth Scholarship

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes …


Rpb4p, A Subunit Of Rna Polymerase Ii, Mediates Mrna Export During Stress, Marganit Farago, Tal Nahari, Christopher Hammel, Charles N. Cole, Mordechai Choder Feb 2003

Rpb4p, A Subunit Of Rna Polymerase Ii, Mediates Mrna Export During Stress, Marganit Farago, Tal Nahari, Christopher Hammel, Charles N. Cole, Mordechai Choder

Dartmouth Scholarship

Changes in gene expression represent a major mechanism by which cells respond to stress. We and other investigators have previously shown that the yeast RNA polymerase II subunit Rpb4p is required for transcription under various stress conditions, but not under optimal growth conditions. Here we show that, in addition to its role in transcription, Rpb4p is also required for mRNA export, but only when cells are exposed to stress conditions. The roles of Rpb4p in transcription and in mRNA export can be uncoupled genetically by specific mutations in Rpb4p. Both functions of Rpb4p are required to maintain cell viability during …


Erv14p Directs A Transmembrane Secretory Protein Into Copii-Coated Transport Vesicles, Jacqueline Powers, Charles Barlowe Feb 2002

Erv14p Directs A Transmembrane Secretory Protein Into Copii-Coated Transport Vesicles, Jacqueline Powers, Charles Barlowe

Dartmouth Scholarship

Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are …


Sec34p, A Protein Required For Vesicle Tethering To The Yeast Golgi Apparatus, Is In A Complex With Sec35p, Susan M. Vanrheenen, Xiaochun Cao, Stephanie K. Sapperstein, Elbert C. Chiang, Vladimir V. Lupashin, Charles Barlowe, M. Gerard Waters Nov 1999

Sec34p, A Protein Required For Vesicle Tethering To The Yeast Golgi Apparatus, Is In A Complex With Sec35p, Susan M. Vanrheenen, Xiaochun Cao, Stephanie K. Sapperstein, Elbert C. Chiang, Vladimir V. Lupashin, Charles Barlowe, M. Gerard Waters

Dartmouth Scholarship

A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393–406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE …


Docking Of Yeast Vacuoles Is Catalyzed By The Ras-Like Gtpase Ypt7p After Symmetric Priming By Sec18p (Nsf), Andreas Mayer, William Wickner Jan 1997

Docking Of Yeast Vacuoles Is Catalyzed By The Ras-Like Gtpase Ypt7p After Symmetric Priming By Sec18p (Nsf), Andreas Mayer, William Wickner

Dartmouth Scholarship

Vacuole inheritance in yeast involves the for- mation of tubular and vesicular “segregation struc- tures” which migrate into the bud and fuse there to es- tablish the daughter cell vacuole. Vacuole fusion has been reconstituted in vitro and may be used as a model for an NSF-dependent reaction of priming, docking, and fusion. We have developed biochemical and micro- scopic assays for the docking step of in vitro vacuole fusion and characterized its requirements. The vacu- oles must be primed for docking by the action of Sec17p ( a -SNAP) and Sec18p (NSF). Priming is neces- sary for both fusion …