Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba Dec 2019

Alanyl-Trna Synthetase Quality Control Prevents Global Dysregulation Of The Escherichia Coli Proteome, Paul Kelly, Nicholas Backes, Kyle Mohler, Christopher Buser, Arundhati Kavoor, Jesse Rinehart, Gregory Phillips, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others …


High Concentrations Of Trimethylamines In Slime Glands Inhibit Skein Unraveling In Pacific Hagfish, Gaurav Jain, Marie Starksen, Kashika Singh, Christopher Hoang, Paul Yancey, Charlene Mccord, Douglas S. Fudge Nov 2019

High Concentrations Of Trimethylamines In Slime Glands Inhibit Skein Unraveling In Pacific Hagfish, Gaurav Jain, Marie Starksen, Kashika Singh, Christopher Hoang, Paul Yancey, Charlene Mccord, Douglas S. Fudge

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Hagfish defend themselves from fish predators by producing large volumes of gill-clogging slime when they are attacked. The slime consists of seawater and two major components that are ejected from the slime glands: mucus and threads. The threads are produced within specialized cells and packaged into intricately coiled bundles called skeins. Skeins are kept from unraveling via a protein adhesive that dissolves when the skeins are ejected from the slime glands. Previous work revealed that hagfish slime glands have high concentrations of methylamines including trimethylamine N-oxide (TMAO), trimethylglycine (betaine) and dimethylglycine (DMG); however, the function of these compounds in the …


The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton Sep 2019

The Fitness Landscape Of The African Salmonella Typhimurium St313 Strain D23580 Reveals Unique Properties Of The Pbt1 Plasmid, Rocío Canals, Roy R. Chaudhuri, Rebecca E. Steiner, Siân V. Owen, Natalia Quinones-Olvera, Melita A. Gordon, Michael Baym, Michael Ibba, Jay C. D. Hinton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These …


Sensory Primary Cilium Is A Distinct Signaling Compartment, Rinzhin Tshering Sherpa Aug 2019

Sensory Primary Cilium Is A Distinct Signaling Compartment, Rinzhin Tshering Sherpa

Pharmaceutical Sciences (PhD) Dissertations

The primary cilium is a solitary cellular organelle that protrudes from the apical cell membrane. Findings on cilia-dependent mechanosenstation have shown that the primary cilium acts as a transducer of fluid-shear stress into intracellular signaling. Over recent years, studies in primary cilia have intensified after determining a causal relationship between dysfunctional primary cilia and cystic diseases. Along with its mechanosensory function, the primary cilium houses a variety of receptors, ion channels and transporter proteins. Studies in cilia biology have shown that primary cilia are coordinators of signaling pathways such as Hedgehog (Hh), Wnt, and platelet-derived growth factor (PDGF) pathways during …


Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba Jul 2019

Translational Control Of Antibiotic Resistance, Anne Witzky, Rodney Tollerson Ii, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Many antibiotics available in the clinic today directly inhibit bacterial translation. Despite the past success of such drugs, their efficacy is diminishing with the spread of antibiotic resistance. Through the use of ribosomal modifications, ribosomal protection proteins, translation elongation factors and mistranslation, many pathogens are able to establish resistance to common therapeutics. However, current efforts in drug discovery are focused on overcoming these obstacles through the modification or discovery of new treatment options. Here, we provide an overview for common mechanisms of resistance to translation-targeting drugs and summarize several important breakthroughs in recent drug development.


The Effects Of Gibberellic Acid And Auxin Hormones On Heliotropism In Sunflowers, Brandon Bernardo, Hagop S. Atamian May 2019

The Effects Of Gibberellic Acid And Auxin Hormones On Heliotropism In Sunflowers, Brandon Bernardo, Hagop S. Atamian

Student Scholar Symposium Abstracts and Posters

Sunflowers are one of many different plant species that are able to track and face the sun in order to optimize the amount of sunlight they are exposed to. This process of orienting towards the sun is called Heliotropism. Sunflowers are able to effectively orient themselves towards the sun because the growth rate on the East and West side of the stem alternates depending on the time of day. At dawn, the East facing stem will grow at a faster rate than the West facing side, resulting in the flower orienting towards the West. This alternating and uneven growth is …


Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed Mar 2019

Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed

Pharmacy Faculty Articles and Research

Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 …


Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Feb 2019

Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an …


Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray Feb 2019

Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila …