Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization Of Human Pyrroline-5-Carboxylate Reductase Enzymes Responsible For L-Proline Biosynthesis, Sagar Patel Aug 2020

Characterization Of Human Pyrroline-5-Carboxylate Reductase Enzymes Responsible For L-Proline Biosynthesis, Sagar Patel

Department of Biochemistry: Dissertations, Theses, and Student Research

Pyrroline-5-carboxylate reductases (EC 1.5.1.2) are important housekeeping enzymes of L-proline biosynthesis, which generate L-proline and influence redox cycling of NAD(P)H/NAD(P)+ to support cellular growth in all domains of life. Structural evidence from X-ray crystal structures of HsPYCR1 (PDB codes 5UAT, 5UAU, and 5UAV) shows both NADPH bound in the N-terminal Rao-Rossmann fold motif and an important hydrogen bond or proton donor role for Thr238 with L-P5C. The Thr238Ala mutation results in 10-fold loss in catalytic efficiency with varied L-P5C relative to the wild-type enzyme, thus indicating Thr238’s potential hydrogen bond and proton donation to L-P5C is critical for catalysis. …


The Role Of Conformational Dynamics In Isocyanide Hydratase Catalysis, Medhanjali Dasgupta Apr 2020

The Role Of Conformational Dynamics In Isocyanide Hydratase Catalysis, Medhanjali Dasgupta

Department of Biochemistry: Dissertations, Theses, and Student Research

Post-translational modification of cysteine residues can regulate protein function and is essential for catalysis by cysteine-dependent enzymes. Covalent modifications neutralize charge on the reactive cysteine thiolate anion and thus alter the active site electrostatic environment. Although a vast number of enzymes rely on cysteine modification for function, precisely how altered structural and electrostatic states of cysteine affect protein dynamics, which in turn, affects catalysis, remains poorly understood.

Here we use X-ray crystallography, computer simulations, site directed mutagenesis and enzyme kinetics to characterize how covalent modification of the active site cysteine residue in the enzyme, isocyanide hydratase (ICH), affects the protein …


Phylogenetic Engineering Of The Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit In Chlamydomonas Reinhardtii, Boon Hoe Lim Nov 2012

Phylogenetic Engineering Of The Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit In Chlamydomonas Reinhardtii, Boon Hoe Lim

Department of Biochemistry: Dissertations, Theses, and Student Research

Thirty-four residues in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) may account for the kinetic differences between Rubisco enzyme from green algae and land plants. By substituting these "phylogenetic residues" as groups and combinations of groups in the large subunit of the green alga Chlamydomonas reinhardtii with those of land-plant Rubisco, the functions and relationships of these "phylogenetic groups" were determined.

A phylogenetic-group substitution at the base of catalytic loop 6 of the large subunit decreases the CO2/O2 specificity of the enzyme, but function is restored by a further phylogenetic-group substitution at the carboxy-terminal tail. Therefore, these …


Functional Studies Of Human Cellular Detoxification Enzymes, Melanie Neely Willis Apr 2011

Functional Studies Of Human Cellular Detoxification Enzymes, Melanie Neely Willis

Department of Biochemistry: Dissertations, Theses, and Student Research

Cellular detoxification allows for the maintenance of cellular homeostasis and prevention of abnormal cell growth by clearing harmful xenobiotics and endobiotics. After oxygenation by phase I enzymes, phase II enzymes such as glucuronosyltransferases and glutathione-s-transferases conjugate a small molecule to the compound, marking it for subsequent export. Many up-stream enzymes are also essential to cellular detoxification by supplying the small compounds for conjugation. These up-stream enzymes include UDP-glucose dehydrogenase, which synthesizes UDP-glucuronate, and glutamate cysteine ligase, which catalyzes the first and rate-limiting step in the synthesis of glutathione.
UDP-glucose dehydrogenase (UGDH) is an important enzyme in human development and in …