Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks Dec 2017

Design And Synthesis Of Analogs Of Myo-Inositol, Serine, And Cysteine To Enable Chemical Biology Studies, Tanei J. Ricks

Doctoral Dissertations

Phosphorylated myo-inositol compounds including inositol phosphates (InsPs) as well as the phosphatidylinositol polyphosphate lipids (PIPns) are critical biomolecules that regulate many of the most important biological processes and pathways. They are aberrant in many disease states due to their regulatory function. The same is true of the phospholipid phosphatidylserine (PS) which can serve as a marker to begin apoptosis. However, the full scope of activities of these structures is not clear, particularly since techniques that enable global detection and analysis of the production of these compounds spatially and temporally are lacking. With all of these obstacles in …


Mechanistic Studies Of Peptide-Mediated Protein Transport Across Droplet-Interface Bilayers, Jing Huang Jul 2017

Mechanistic Studies Of Peptide-Mediated Protein Transport Across Droplet-Interface Bilayers, Jing Huang

Doctoral Dissertations

Pep-1 is a promising peptide tool that delivers proteins and peptides into cells with conserved bioactivity. Pep-1 has great potential because of the high efficiency and lack of toxicity. The mechanism of Pep-1-mediated transport is not fully understood. In my thesis, droplet-interface bilayer (DIB) has been used for the mechanistic studies of Pep-1. Here, DIB is developed for different functions such as quantitation of protein translocation, solution exchange to a formed bilayer and simultaneous observation of multiple membranes. Research work on Pep-1 with DIB reveals that the negative charge of the inner membrane leaflet plays a significant role in promoting …


Relationship Between Structure And Function In Nickel Proteins And Enzymes, Carolyn Carr Jul 2017

Relationship Between Structure And Function In Nickel Proteins And Enzymes, Carolyn Carr

Doctoral Dissertations

Nickel is a rarely used but biologically important metal that is utilized in all three domains of life. In nickel utilizing organisms there is a corresponding trafficking system specifically designed to capture nickel, deliver, and export excess nickel to prevent toxic effects. It is critical to understand the mechanisms by which organisms achieve metal selectivity to duplicate or disrupt this process for the benefit of human health and to further understanding of regulation mechanisms in biology. RcnR is a Ni(II) and Co(II) responsive transcriptional regulator in E. coli. The research reported in this dissertation focuses on the relationship between …


Vitreous Gel Physics, Svetlana Morozova Jul 2017

Vitreous Gel Physics, Svetlana Morozova

Doctoral Dissertations

The transparent vitreous, which fills the posterior cavity of the eye, is incredibly engineered. The charged polyelectrolyte hyaluronic acid (HA) network swells to maintain the pressure in the eye, while stiff collagen type II bundles help absorb any external mechanical shock. Our investigations have contributed to a few key developments related to the physical properties of the vitreous: (1) The stiff collagen network that supports the soft gel network is self-assembled from single triple-helix collagen proteins. Electrostatic interactions drive this assembly, such that the size and concentration are optimized at physiological salt concentrations. The width of the assemblies remarkably changes …


Mechanistic Studies Of Proton Gradient-Driven Protein Translocation By Droplet-Interface Bilayer Techniques, En-Hsin Lee Jul 2017

Mechanistic Studies Of Proton Gradient-Driven Protein Translocation By Droplet-Interface Bilayer Techniques, En-Hsin Lee

Doctoral Dissertations

Transmembrane proton gradient plays a fundamental role in protein translocation across cellular membranes, including the transport of secreted enzymes from bacterial pathogens into host cells. Much attention has been devoted to understanding the machinery of such delivery and how it functions. Over the past decade, translocation of anthrax toxin has been widely studied not only because of its central role in the deadly pathogenesis of Bacillus anthracis, but also because that it is one of the most tractable toxins and thus serves as an attractive model for studying the translocation machinery that is dependent on proton gradient across membrane. …


The Statistical Dynamics Of Nonequilibrium Control, Grant Murray Rotskoff '09 Apr 2017

The Statistical Dynamics Of Nonequilibrium Control, Grant Murray Rotskoff '09

Doctoral Dissertations

Living systems, even at the scale of single molecules, are constantly adapting to changing environmental conditions. The physical response of a nanoscale system to external gradients or changing thermodynamic conditions can be chaotic, nonlinear, and hence difficult to control or predict. Nevertheless, biology has evolved systems that reliably carry out the cell’s vital functions efficiently enough to ensure survival. Moreover, the development of new experimental techniques to monitor and manipulate single biological molecules has provided a natural testbed for theoretical investigations of nonequilibrium dynamics. This work focuses on developing paradigms for both understanding the principles of nonequilibrium dynamics and also …


The Maculoprotective Effect Of A Thiol Antioxidant In Retinal Degeneration Models, Hsiu-Jen Wang Jan 2017

The Maculoprotective Effect Of A Thiol Antioxidant In Retinal Degeneration Models, Hsiu-Jen Wang

Doctoral Dissertations

"Age-related macular degeneration (AMD) is a leading cause of irreversible blindness among adults, age 60 and older, in developed countries. While oxidative stress is implicated in the pathogenesis of AMD, clinical studies have shown that dietary antioxidants can delay progression of AMD. Currently, there is no FDA-approved treatment for AMD. Therefore, we hypothesized that N-acetylcysteine amide (NACA), a thiol antioxidant, would protect retinal pigment epithelium and impede the progression of retinal degeneration. The goal of this work was to evaluate the efficacy of NACA in preventing retinal pigment epithelial cell and photoreceptor death in AMD models. To achieve this, we …