Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki Dec 2014

Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki

Theses and Dissertations

G-protein-coupled receptors (GPCRs) are the largest family of receptors that respond to a wide variety of extracellular stimuli, including molecular ligands such as odorants, neurotransmitters, and hormones, as well as physical agents sigh as light and pressure. The stimulation event results in initiating conformational changes in the structure of the receptor, which further results in the release of the heterotrimeric G-protein; the latter has a variety of functions within signaling pathways in cellular biology. The GPCR explored in this investigation is the Sterile 2 α-factor receptor (Ste2), whose natural function is that of a yeast mating pheromone receptor. Its natural …


Cellular Zinc Trafficking: The Zinc Proteome And Its Reactions With Cadmium, Mohammad Ali Namdarghanbari Dec 2014

Cellular Zinc Trafficking: The Zinc Proteome And Its Reactions With Cadmium, Mohammad Ali Namdarghanbari

Theses and Dissertations

Metals play a crucial role in living systems. Iron, zinc, copper, molybdenum, and manganese are involved in many essential biological activities. Among transition metals, zinc after iron is the most abundant transition metal in the human body and the most abundant in the brain. It exists in more than 3000 proteins, which comprise about 10% of the human proteome. Zn2+ dyshomeostasis is associated with chronic diseases such as metabolic syndrome, diabetes and related complications, bone loss, growth retardation in young children, and neurological and behavioral problems. Despite a good knowledge obtained for metabolism of some metal ions such as copper, …