Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen Jun 2014

Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen

USF Tampa Graduate Theses and Dissertations

Encapsulation of biomolecules is of great interest to research advances related to biology, physiology, immunology, and biochemistry, as well as industrial and biomedical applications such as drug delivery, biocatalysis, biofuel, food and cosmetics. Encapsulation provides functional characteristics that are not fulfilled by free biomolecules and stabilizes the fragile biomolecules. In terms of biocatalysis, solid support can often enhance the stability of enzymes, as well as facilitate separation and recovery for reuse while maintaining activity and selectivity. Various kinds of materials have been used for encapsulation of biomolecules, among which, porous materials are an important group. Metal-organic frameworks (MOFs) have attracted …


Study Of The Motility Of Biological Cells By Digital Holographic Microscopy, Xiao Yu May 2014

Study Of The Motility Of Biological Cells By Digital Holographic Microscopy, Xiao Yu

USF Tampa Graduate Theses and Dissertations

In this dissertation, I utilize digital holographic microscopy (DHM) to study the motility of biological cells. As an important feature of DHM, quantitative phase microscopy by digital holography (DH-QPM) is applied to study the cell-substrate interactions and migratory behavior of adhesive cells. The traction force exerted by biological cells is visualized as distortions in flexible substrata. Motile fibroblasts produce wrinkles when attached to a silicone rubber film. For the non-wrinkling elastic substrate polyacrylamide (PAA), surface deformation due to fibroblast adhesion and motility is visualized as tangential and vertical displacement. This surface deformation and the associated cellular traction forces are measured …


Combination Of The Computational Methods: Molecular Dynamics, Homology Modeling And Docking To Design Novel Inhibitors And Study Structural Changes In Target Proteins For Current Diseases, Katherine Cristina Parra Apr 2014

Combination Of The Computational Methods: Molecular Dynamics, Homology Modeling And Docking To Design Novel Inhibitors And Study Structural Changes In Target Proteins For Current Diseases, Katherine Cristina Parra

USF Tampa Graduate Theses and Dissertations

In this thesis, molecular dynamics simulations, molecular docking, and homology modeling methods have been used in combination to design possible inhibitors as well as to study the structural changes and function of target proteins related to diseases that today are in the spotlight of drug discovery. The inwardly rectifying potassium (Kir) channels constitute the first target in this study; they are involved in cardiac problems. On the other hand, tensin, a promising target in cancer research, is the second target studied here.

The first chapter includes a brief update on computational methods and the current proposal of the combination of …