Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Reclaiming The Efficacy Of Β-Lactam–Β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility Of Cmy-2-Producing Escherichia Coli To Ceftazidime, Krisztina M. Papp-Wallace, Marisa L. Winkler, Julian A. Gatta, Magdalena A. Taracila, Sujatha Chilakala, Yan Xu, J. Kristie Johnson, Robert A. Bonomo May 2014

Reclaiming The Efficacy Of Β-Lactam–Β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility Of Cmy-2-Producing Escherichia Coli To Ceftazidime, Krisztina M. Papp-Wallace, Marisa L. Winkler, Julian A. Gatta, Magdalena A. Taracila, Sujatha Chilakala, Yan Xu, J. Kristie Johnson, Robert A. Bonomo

Chemistry Faculty Publications

CMY-2 is a plasmid-encoded Ambler class C cephalosporinase that is widely disseminated in Enterobacteriaceae and is responsible for expanded-spectrum cephalosporin resistance. As a result of resistance to both ceftazidime and β-lactamase inhibitors in strains carrying blaCMY, novel β-lactam–β-lactamase inhibitor combinations are sought to combat this significant threat to β-lactam therapy. Avibactam is a bridged diazabicyclo [3.2.1]octanone non-β-lactam β-lactamase inhibitor in clinical development that reversibly inactivates serine β-lactamases. To define the spectrum of activity of ceftazidime-avibactam, we tested the susceptibilities of Escherichia coli clinical isolates that carry blaCMY-2 or blaCMY-69 and investigated the inactivation kinetics of CMY-2. Our analysis showed that …


Bsa–Boronic Acid Conjugate As Lectin Mimetics, Satya Nandana Narla, Poornima Pinnamaneni, Huan Nie, Yu Li, Xue-Long Sun Jan 2014

Bsa–Boronic Acid Conjugate As Lectin Mimetics, Satya Nandana Narla, Poornima Pinnamaneni, Huan Nie, Yu Li, Xue-Long Sun

Chemistry Faculty Publications

We report bovine serum albumin (BSA)–boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA–BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS–PAGE gel. The BSA–BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA–BA conjugates was conducted by immobilizing BSA–BA onto SPR gold chip. Overall, we demonstrated a BSA–BA-based …


Quantification Of Free Sialic Acid In Human Plasma Through A Robust Quinoxalinone Derivatization And Lc–Ms/Ms Using Isotope-Labeled Standard Calibration, Dan Wang, Xiang Zhou, Lin Wang, Sihe Wang, Xue-Long Sun Jan 2014

Quantification Of Free Sialic Acid In Human Plasma Through A Robust Quinoxalinone Derivatization And Lc–Ms/Ms Using Isotope-Labeled Standard Calibration, Dan Wang, Xiang Zhou, Lin Wang, Sihe Wang, Xue-Long Sun

Chemistry Faculty Publications

We report an accurate quantification of free sialic acid (SA) in human plasma using LC–MS/MS method with isotope-labeled standard calibration (ILSC) and robust derivatization. Specifically, derivatization of SA with a stable and inexpensive 3,4-diaminotoluene (DAT) provides a stable product of SA with high MS response, proving a convenient and cost-effective LC–MS/MS analysis of free SA. In addition, the use of 13C3-SA as calibration standard ensured the accuracy for the measurement. This assay used ultra high performance liquid chromatography (UHPLC) for separation of native/labeled SA and IS from matrix interference, and employed mass spectrometry in multiple reaction monitoring …