Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Wayne State University

Wayne State University Dissertations

Cysteine desulfurase

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization Of The Yeast Cysteine Desulfurase Complex Within The Mitochondrial Fe-S Cluster Biogenesis, Dulmini Pabasara Barupala Jan 2016

Characterization Of The Yeast Cysteine Desulfurase Complex Within The Mitochondrial Fe-S Cluster Biogenesis, Dulmini Pabasara Barupala

Wayne State University Dissertations

Disrupted iron homeostasis within the human body materializes as various disorders. Pathophysiology of many of them relates to iron induced oxidative damage to key cellular components caused by iron accumulation within the tissues. Pertaining to the growing occurrence, cost of patient care and devastating burden associated with these diseases, the call for understanding the role of iron homeostasis within these disorders becomes inevitable. Being an abundant iron containing cofactor, the role of Fe-S clusters in cellular iron homeostasis is indisputable in the case of Friedreich’s ataxia, a disease caused by a deficiency in the protein frataxin that is indispensable during …


Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat Jan 2011

Molecular Details Of The Mitochondrial Iron Sulfur Cluster Assembly Pathway, Swati Rawat

Wayne State University Dissertations

MOLECULAR DETAILS OF THE MITOCHONDRIAL IRON SULFUR CLUSTER ASSEMBLY PATHWAY

Iron-sulfur clusters are an important class of prosthetic group involved in electron transfer, enzyme catalysis, and regulation of gene expression. Their biosynthesis requires complex machinery located within the mitochondrion since free iron and sulfide are extremely toxic to the cell. Defects in this pathway results in several diseases such as Friedreich's Ataxia (FRDA), Sideroblastic Anemia and ISCU Myopathy. Therefore molecular details of the biogenesis pathway will provide deep insight in the pathway and treatment options for these diseases. FRDA is caused by deficiency of a single protein called as `Frataxin'. …