Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

The Texas Medical Center Library

Dissertations & Theses (Open Access)

Hsp70

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer May 2019

Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer

Dissertations & Theses (Open Access)

In eukaryotic cells, protein homeostasis and cellular fitness is promoted by the transcription factor heat shock factor 1 (HSF1) during exposure to proteotoxic stress. HSF1 controls the basal and stress-induced expression of molecular chaperones and other protective targets. Dynamic regulation of HSF1 involves the major heat shock proteins Hsp70 and Hsp90. Recent advances in the understanding of this regulatory circuit in Saccharomyces cerevisiae have shown that the Hsp70 Ssa1 acts as a sensor for some proteotoxic stresses and is capable of a direct interaction with Hsf1. This work continues to explore the complex regulatory interaction between Hsf1 and Ssa1. I …


Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams May 2014

Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams

Dissertations & Theses (Open Access)

The Hsp70 class of molecular chaperones play critical roles in protein homeostasis via an ATP-dependent folding cycle. Cytosolic Hsp70s in the budding yeast Saccharomyces cerevisiae, Ssa and Ssb, interact with up to three distinct nucleotide exchange factors (NEFs) homologous to human counterparts; Sse1/Sse2/HSP110, Fes1/HspBP1, and Snl1/Bag1. In an effort to understand the differential functional contributions of the cytosolic NEFs to protein homeostasis (“proteostasis”), I carried out comparative genetic, biochemical and cell biological analyses. For these studies, I developed protocols to monitor protein disaggregation and reactivation in a near real-time coupled assay that revealed the importance of aggregate dynamics in the …