Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Dissertations & Theses (Open Access)

KRAS

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair May 2022

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair

Dissertations & Theses (Open Access)

KRAS, a 21 kDa small GTPase protein, functions as a molecular switch playing a key role in regulating cell proliferation. Dysregulation of KRAS signaling by oncogenic mutations leads to uncontrolled cell proliferation, a hallmark of cancer cells. Attempts to therapeutically target oncogenic KRAS have led to limited success resulting in a need to identify new mechanisms to targeting KRAS. The interaction of KRAS with its regulators, effectors, and the membrane present one such avenue. In this study, we investigated how post-translational covalent and environmental modifications could modulate these interactions of KRAS. Using computational molecular dynamics simulations, nuclear magnetic resonance spectroscopy …


Differential Activity Of The Kras Oncogene By Method Of Activation: Implications For Signaling And Therapeutic Intervention, Nathan Ihle Dec 2012

Differential Activity Of The Kras Oncogene By Method Of Activation: Implications For Signaling And Therapeutic Intervention, Nathan Ihle

Dissertations & Theses (Open Access)

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure …