Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin Nov 2011

Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, …


Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer Nov 2011

Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

HIV-1 Vif, an accessory protein in the viral genome, performs an important role in viral pathogenesis by facilitating the degradation of APOBEC3G, an endogenous cellular inhibitor of HIV-1 replication. In this study, intrinsically disordered regions are predicted in HIV-1 Vif using sequence-based algorithms. Intrinsic disorder may explain why traditional structure determination of HIV-1 Vif has been elusive, making structure-based drug design impossible. To characterize HIV-1 Vif's structural topology and to map the domains involved in oligomerization we used chemical cross-linking, proteolysis, and mass spectrometry. Cross-linking showed evidence of monomer, dimer, and trimer species via denaturing gel analysis and an additional …


Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren Nov 2011

Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren

Celia A. Schiffer

Molecular dynamics simulations of the DNA binding domain of 434 repressor are presented which aim at unraveling the role of solvent in protein denaturation. Four altered solvent models, each mimicking various possible aspects of the addition of a denaturant to the aqueous solvent, were used in the simulations to analyze their effects on the stability of the protein. The solvent was altered by selectively changing the Coulombic interaction between water and protein atoms and between different water molecules. The use of a modified solvent model has the advantage of mimicking the presence of denaturant without having denaturant molecules present in …


Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.