Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Biomimetic Precipitation Of Uniaxially Grown Calcium Phosphate Crystals From Full-Length Human Amelogenin Sols, Vuk Uskoković, Wu Li, Stefan Habelitz Jan 2011

Biomimetic Precipitation Of Uniaxially Grown Calcium Phosphate Crystals From Full-Length Human Amelogenin Sols, Vuk Uskoković, Wu Li, Stefan Habelitz

Pharmacy Faculty Articles and Research

Human dental enamel forms over a period of 2 – 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant fulllength human amelogenin matrix in combination with a programmable titration system. The growth …


Hydrolysis Of Amelogenin By Matrix Metalloprotease-20 Accelerates Mineralization In Vitro, Vuk Uskoković, Feroz Khan, Haichuan Liu, Halina Ewa Witkowska, Li Zhu, Wu Li, Stefan Habelitz Jan 2011

Hydrolysis Of Amelogenin By Matrix Metalloprotease-20 Accelerates Mineralization In Vitro, Vuk Uskoković, Feroz Khan, Haichuan Liu, Halina Ewa Witkowska, Li Zhu, Wu Li, Stefan Habelitz

Pharmacy Faculty Articles and Research

In the following respects, tooth enamel is a unique tissue in the mammalian body: (a) it is the most mineralized and hardest tissue in it comprising up to 95 wt% of apatite; (b) its microstructure is dominated by parallel rods composed of bundles of 40 – 60 nm wide apatite crystals with aspect ratios reaching up to 1:10,000 and (c) not only does the protein matrix that gives rise to enamel guides the crystal growth, but it also conducts its own degradation and removal in parallel. Hence, when mimicking the process of amelogenesis in vitro, crystal growth has to …


Altered Self-Assembly And Apatite Binding Of Amelogenin Induced By N-Terminal Proline Mutation, Li Zhu, Vuk Uskoković, Thuan Le, Pamela Denbesten, Yulei Huang, Stefan Habelitz, Wu Li Jan 2011

Altered Self-Assembly And Apatite Binding Of Amelogenin Induced By N-Terminal Proline Mutation, Li Zhu, Vuk Uskoković, Thuan Le, Pamela Denbesten, Yulei Huang, Stefan Habelitz, Wu Li

Pharmacy Faculty Articles and Research

Objective—A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals.

Design—Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM.

Results—As …


Prospects And Pits On The Path Of Biomimetics: The Case Of Tooth Enamel, Vuk Uskoković Jan 2010

Prospects And Pits On The Path Of Biomimetics: The Case Of Tooth Enamel, Vuk Uskoković

Pharmacy Faculty Articles and Research

This review presents a discourse on challenges in understanding and imitating the process of amelogenesis in vitro on the molecular scale. In light of the analysis of imitation of the growth of dental enamel, it also impends on the prospects and potential drawbacks of the biomimetic approach in general. As the formation of enamel proceeds with the protein matrix guiding the crystal growth, while at the same time conducting its own degradation and removal, it is argued that three aspects of amelogenesis need to be induced in parallel: a) crystal growth; b) protein assembly; c) proteolytic degradation. A particular emphasis …


Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell Jan 2006

Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we …