Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen Aug 2023

Exploring Topological Phonons In Different Length Scales: Microtubules And Acoustic Metamaterials, Ssu-Ying Chen

Dissertations

The topological concepts of electronic states have been extended to phononic systems, leading to the prediction of topological phonons in a variety of materials. These phonons play a crucial role in determining material properties such as thermal conductivity, thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules, will be explored The microtubule has been proposed as an analog of a topological phononic insulator due to its unique properties. One key characteristic of topological materials is the …


Angiogenic Supports For Microvascular Engineering, Zain Siddiqui Dec 2022

Angiogenic Supports For Microvascular Engineering, Zain Siddiqui

Dissertations

Ischemic tissue disease is caused by a lack of circulation / blood supply to tissue. This can be treated by introducing a number of angiogenic (pro-blood vessel forming) factors into the tissue. This work presents strategies for ischemic tissue treatment utilizing a novel proangiogenic self-assembling peptide hydrogel platform. To demonstrate the utility of this platform, its use alone as an angiogenic therapeutic (both alone as a self-assembling hydrogel and with two-component systems), and its ability to vascularize implants is explored. Due to these angiogenic scaffolds demonstrating efficacy to regenerate microvasculature, this work evaluates diseases that can be treated by the …


Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger Aug 2020

Microglia Induced Neuroinflammation Through The Nlrp3 Inflammasome Following Blast Traumatic Brain Injury, Daniel Younger

Dissertations

The incidence of traumatic brain injury (TBI) among military personnel have been steadily increasing with modern conflicts. A recent RAND report estimated 320,000 service members, totaling 20% of deployed forces, suffer from TBI. However, of this population roughly 60% have not seen a medical professional specifically for TBI. Unlike the civilian population, the primary cause of TBI for active-duty military personnel is blast exposure. Blasts now account for over 70% of all US military casualties in operation Iraqi Freedom (OIF) and Operation enduring freedom (OEF) and are the major cause of TBI. Among many pathological mechanisms associated with blast TBI, …


Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam May 2020

Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam

Dissertations

The local properties of tubulin dimers dictate the properties of the larger microtubule assembly. In order to elucidate this connection, tubulin-tubulin interactions are be modeled as harmonic interactions to map the stiffness matrix along the length of the microtubule. The strength of the interactions are measured by imaging and tracking the movement of segments along the microtubule over time, and then performing a fourier transform to extract the natural vibrational frequencies. Using this method the first ever reported experimental phonon spectrum of the microtubule is reported. This method can also be applied to other biological materials, and opens new doors …


Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua May 2019

Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua

Dissertations

Micropollution in natural waters such as rivers and groundwater aquifers is a widespread problem that prevents these potentially potable sources from being used as drinking water. In the United States, approximately two-thirds of the over 1,200 most serious hazardous waste sites in the nation are contaminated with trichloroethylene (TCE), a potentially carcinogenic compound. Other emerging and environmentally persistent organic micropollutants include polyromantic hydrocarbons (PAHs), organophosphate flame retardants, endocrine disrupting compounds (EDCs), pesticides, herbicides, pharmaceuticals and personal care products (PPCPs). Membrane filtration is one of the most efficient separation processes widely used for water treatment and pollutant removal. However, traditional membrane …


Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu May 2018

Fluorescent Probes And Functionalized Nanoparticles For Bioimaging: Synthesis, Photophysical Properties And Applications, Xinglei Liu

Dissertations

The development of new organic molecular probes with excellent photophysical properties and high fluorescence quantum yields is of considerable interest to many research areas including one- and two-photon fluorescence microscopy, fluorescence-based sensing methodologies, and cancer therapy. Series of organic linear-/non-linear optical molecules including squaraine derivatives, and fluorene derivatives as well as other bioconjugates are designed and synthesized during the doctoral study for the aim of ion detection (Chapter 5), photo dynamic therapy, and deep-tissue imaging (Chapter 4). These optical probes are capable of absorbing light in the near infrared (NIR) window and thus have deeper penetration and cause less photodamage …