Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Protein Stability In Solution And In The Gas Phase., Yousef Haidar Sep 2023

Protein Stability In Solution And In The Gas Phase., Yousef Haidar

Electronic Thesis and Dissertation Repository

Electrospray Ionization mass spectrometry (ESI-MS) is widely used for probing proteins, yet many aspects of this technique remain elusive. Using MS, ion mobility spectrometry (IMS), and circular dichroism (CD) spectroscopy, this thesis sheds light on the stability differences of proteins in the gas phase and solution. After a general introduction (Chapter 1), Chapter 2 scrutinizes some aspects of native ESI. Our data highlight the significance of cone voltage in maintaining a native-like fold and show the advantage of using NH4Ac in protein experiments. Chapter 3 focuses on hydrogen/deuterium exchange (HDX)-MS. Several studies have reported that D2O …


A Highly Charged Topic: Intrinsically Disordered Proteins And Protein Pka Values, Carter J. Wilson Apr 2023

A Highly Charged Topic: Intrinsically Disordered Proteins And Protein Pka Values, Carter J. Wilson

Electronic Thesis and Dissertation Repository

Intrinsically disordered proteins (IDPs) are known not only for their roles in disease but also for their conformational flexibility, which makes them elusive for experimentation. We consider the role played by theory and simulation in resolving important questions pertaining to IDP structure and dynamics, as well as the nature of the charged residues (e.g., glutamate, lysine, etc.) that enrich them. Specifically, we investigated how the deep learning trained AlphaFold2 (AF2) predictor estimates disorder content, revealing both strong performance in relation to conventional approaches and an important relationship between the AF2 confidence metric and IDP dynamics. We also assessed how modern …


The Synthesis And Characterization Studies Of Modified Nucleobase In Pna And Dna, Gyeongsu Park Mar 2023

The Synthesis And Characterization Studies Of Modified Nucleobase In Pna And Dna, Gyeongsu Park

Electronic Thesis and Dissertation Repository

Nucleic acids have been extensively studied not only for their importance in biological systems as the medium of genetic information but also for their potential uses in therapeutic, diagnostic and other biological applications. As such, modified oligonucleotides and oligonucleotide analogues have drawn the attention of researchers from various disciplines. Modification of oligonucleotides can enhance their desired characteristics and engender unique properties, such as fluorescence, giving rise to a variety of applications. Peptide nucleic acid (PNA) is an oligonucleotide mimic with a pseudo-peptide backbone based on N-(2-aminoethyl)glycine that is renowned for high target binding affinity and resistance to enzyme degradation. …


Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin Oct 2022

Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin

Electronic Thesis and Dissertation Repository

Proteins perform various biological functions, e.g., as enzymes or transporters. In addition to naturally occurring proteins, the use of protein therapeutic drugs for treating cancer and other diseases is a rapidly growing area. A thorough biophysical characterization of proteins and protein therapeutics opens the door to a more comprehensive understanding of their role in health and disease. This dissertation aims to expand the capabilities of an existing technique (Hydrogen Deuterium Exchange Mass Spectrometry, HDX-MS), which is widely used for probing protein structure and dynamics. Conventionally, HDX-MS experiments are performed as a function of labelling time. Here we aim to establish …


Effects Of Oxidative Modifications On The Structure And Non-Canonical Functions Of Cytochrome C Studied By Mass Spectrometry, Victor Yin Sep 2020

Effects Of Oxidative Modifications On The Structure And Non-Canonical Functions Of Cytochrome C Studied By Mass Spectrometry, Victor Yin

Electronic Thesis and Dissertation Repository

The peroxidase activity of the mitochondrial protein cytochrome c (cyt c) plays a critical role in triggering programmed cell death, or apoptosis. However, the native structure of cyt c should render this activity impossible due to the lack of open iron coordination sites at its heme cofactor. Despite its key biological importance, the molecular mechanisms underlying this structure-function mismatch remain enigmatic. The work detailed in this dissertation fills this knowledge gap by using mass spectrometry (MS) to decipher the central role that protein oxidative modifications and their associated structural changes play in activating the peroxidase function of cyt c …


Synthesis Of Crosslinkable Poly(Ester Amide)S For Cell Encapsulation And Delivery, Yu Ting (Natalie) Liang Sep 2019

Synthesis Of Crosslinkable Poly(Ester Amide)S For Cell Encapsulation And Delivery, Yu Ting (Natalie) Liang

Electronic Thesis and Dissertation Repository

Tissue engineering using adipose-derived stromal cells (ASCs) shows promise for soft tissue regeneration. Biodegradable polymers are potential biomaterials as they support the growth and delivery of cells. Specifically, poly(ester amide)s (PEAs) are a class of biodegradable polymers with tunable structures that have been shown to exhibit low cytotoxicity and support the growth of various cell types. This thesis involved the development of new water soluble amino acid-based PEAs with crosslinkable moieties to enable formation of hydrogel scaffolds for ASC encapsulation. These hydrophilic phenylalanine-based and alanine-based PEAs were synthesized by solution polycondensation and photo-crosslinked into a series of hydrogels with and …


Investigating The Rotary Mechanism Of Atp Synthase Using Molecular Dynamics Simulations, Angela Marcela Murcia Rios Apr 2019

Investigating The Rotary Mechanism Of Atp Synthase Using Molecular Dynamics Simulations, Angela Marcela Murcia Rios

Electronic Thesis and Dissertation Repository

F1-ATPase is a motor protein that can use ATP hydrolysis to drive rotation of the central subunit. The γ C-terminal helix constitutes of the rotor tip that is seated in an apical bearing formed by the α3β3 head. It remains uncertain to what extent the γ conformation during rotation differs from that seen in rigid crystal structures. Existing models assume that the entire γ subunit participates in every rotation. Here we develop a molecular dynamics (MD) strategy to model the off-axis forces acting on γ in F1-ATPase. MD runs showed stalling of the …


Metalation And Structural Properties Of Apo-Metallothioneins, Gordon W. Irvine Apr 2017

Metalation And Structural Properties Of Apo-Metallothioneins, Gordon W. Irvine

Electronic Thesis and Dissertation Repository

Metals are required by a quarter of all proteins to achieve their biological function, whether in an active site involved in catalytic chemistry or in a structural capacity. Metals are tightly regulated at the cellular level due to their propensity to cause unwanted side reactions and to be scavenged for use by pathogens. One of the proteins involved in this regulation of metal homeostasis is metallothionein (MT) which is a small, cysteine rich protein primarily involved in the regulation of zinc and copper homeostasis and heavy metal detoxification. MT is unique in its high cysteine content (~30% of the residues), …


Reactions Between Zinc Metallothionein And Carbonic Anhydrase, Tyler B. J. Pinter Sep 2015

Reactions Between Zinc Metallothionein And Carbonic Anhydrase, Tyler B. J. Pinter

Electronic Thesis and Dissertation Repository

More than 25% of proteins require metal ion cofactors for structure or function. The interactions between metalloproteins have largely been overlooked, though these interactions ultimately govern metal localization and control metal ion homeostasis. Mammalian metallothionein (MT) is a small, cysteine-rich metalloprotein that binds numerous metal ions per protein strand. Up to seven divalent metals, such as zinc or cadmium, are wrapped into a clustered two-domain structure. This unusually high metal content places MT as an attractive candidate for studying interactions with other metal-binding proteins. This present study investigates the metal transfer reactions between MTs and other metalloproteins, using carbonic anhydrase …


Complementary Mass Spectrometry Methods For Characterizing Protein Folding, Structure, And Dynamics, Siavash Vahidi Jul 2015

Complementary Mass Spectrometry Methods For Characterizing Protein Folding, Structure, And Dynamics, Siavash Vahidi

Electronic Thesis and Dissertation Repository

Proteins are involved in virtually every biochemical process. A comprehensive characterization of factors that govern protein function is essential for understanding the biomedical aspects of human health. This dissertation aims to develop complementary mass spectrometry-based methods and apply them to solve problems pertaining to the area of protein structure, folding and dynamics.

‎Chapter 1 uses fast photochemical oxidation of proteins (FPOP) to characterize partially disordered conformers populated under semi-denaturing conditions. In FPOP, ·OH generated by laser photolysis of H2O2 introduces oxidative modifications at solvent accessible side chains. By contrast, buried sites are protected from radical attack. Using …


The Role Of Metallothionein In Zinc Homeostasis, Kelly L. Summers Jul 2013

The Role Of Metallothionein In Zinc Homeostasis, Kelly L. Summers

Electronic Thesis and Dissertation Repository

The structure of the unique metal-binding protein, metallothionein (MT), consists of two metal-thiolate-clustered binding domains; the β-domain binds up to three divalent metals and the α-domain binds four. The mechanisms through which the metals are bound and arranged into domains, as well as the function of MT in metal ion homeostasis, remains largely unknown. By utilizing electrospray ionization mass spectrometry (ESI MS) to identify each species, and by comparing the data with simulations, MT 1a was found to bind Zn2+ non-cooperatively. Through a competition experiment between MT and its individual domain peptides, MT was proposed to bind Zn2+ …


Structural Motifs Of Novel Metallothionein Proteins, Duncan E K Sutherland Apr 2012

Structural Motifs Of Novel Metallothionein Proteins, Duncan E K Sutherland

Electronic Thesis and Dissertation Repository

Metallothioneins (MT) are a family of small cysteine rich proteins, which have been implicated in toxic metal detoxification, protection against oxidative stress, and as a metallochaperone. The most well studied member of the family is the mammalian MT, which consists of two domains: a β-domain with 9 cysteine residues, which sequesters 3 Cd2+/Zn2+, and an α-domain with 11 cysteine residues, which sequesters 4 Cd2+/Zn2+. The exact functions of MT are unknown but must relate to its metalation status. Several areas that could lead to the assignment of function include 1) the determination …


Structure And Dynamics Of The Membrane Protein Bacteriorhodopsin Studied By Mass Spectrometry, Yan Pan Oct 2011

Structure And Dynamics Of The Membrane Protein Bacteriorhodopsin Studied By Mass Spectrometry, Yan Pan

Electronic Thesis and Dissertation Repository

Membrane proteins continue to represent a major challenge for most analytical techniques. Using bacteriorhodopsin (BR) as model system, this work aims to develop mass spectrometry (MS)-based approaches for exploring the structure, dynamics and folding of membrane proteins.

As the first step, BR in its native lipid environment was exposed to hydroxyl radicals, which were produced by laser photolysis of hydrogen peroxide. It was found that the resulting methionine (Met) labeling pattern was consistent with the known BR structure. This finding demonstrates that laser-induced oxidative Met labeling can provide structural information on membrane proteins. In subsequent experiments, the effects of different …