Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Delineation Of New Mechanisms Of Dna Double Strand Break Repair, Songli Zhu Dec 2018

Delineation Of New Mechanisms Of Dna Double Strand Break Repair, Songli Zhu

Theses & Dissertations

DNA damage is frequently induced in cells by both endogenous and exogenous agents. DNA damage, particular double strand breaks (DSBs) may lead to genomic instability, and the progression of cancer, aging, neurodegeneration, and other human diseases. The cell employs two major DSB repair pathways, including homologous recombination (HR) and Non-homologous end joining (NHEJ), but the detailed mechanisms of DSB repair remain to be further revealed.

In the first part of this study, we characterized a plasmid-based assay to investigate NHEJ repair in Xenopus egg extracts. Our data argued for a preference for the precise repair by the NHEJ machinery and …


Intra- And Inter-Molecular Signaling In A Cardiac Connexin: Role Of Cytoplasmic Domain Dimerization And Phosphorylation, Andrew J. Trease Dec 2018

Intra- And Inter-Molecular Signaling In A Cardiac Connexin: Role Of Cytoplasmic Domain Dimerization And Phosphorylation, Andrew J. Trease

Theses & Dissertations

As critical mediators of cell-to-cell communication, gap junctions (GJs) are comprised of membrane channels that directly link the cytoplasm of adjacent coupled cells thereby allowing for the passage of ions, small metabolites, and secondary messengers. Each channel is formed by the apposition of two connexons from adjacent cells, each composed of six connexin (Cx) proteins. Each GJ channel functions to promote signal propagation and synchronization of cells and tissues in organs. Furthermore, GJs are essential for proper propagation of cardiac action potentials from one cell to the next, leading to the coordinated contraction and relaxation of heart muscle powering circulation. …


The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest May 2018

The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest

Theses & Dissertations

MUC1 is overexpressed in over 90% of pancreatic cancer cases, and its interaction with beta-catenin promotes progression of the disease. Various in vitro and in vivo methods show that beta-catenin and MUC1 interact by way of the cytoplasmic tail of MUC1 (MUC1.CT). This interaction occurs in the membrane of pancreatic cancer cells but is found to a smaller extent in the nucleus as well. Biophysical methods suggest that MUC1 interacts with beta-catenin through a sequence of amino acids in the tail of MUC1 that sit very near the transmembrane domain of MUC1. In pancreatic ductal adenocarcinoma cells, it appears that …