Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

2014

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 86

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett Dec 2014

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett

Master's Theses

DAX-1 (NR0B1) is an orphan nuclear receptor that plays a key role in the development and maintenance of steroidogenic tissue in mammals. Dax-1 is also expressed in mouse embryonic stem (ES) cells and is required to maintain pluripotency. Duplication of the X-chromosome in the region containing the NR0B1 gene results in sex reversal, and mutations in NR0B1 cause adrenal hypoplasia congenita. DAX-1 has been observed to act as a corepressor of other nuclear receptors including androgen receptor (AR), estrogen receptor (ER), and steroidogenic factor 1 (SF-1). In addition to pluripotent ES cells, DAX-1 is primarily expressed in select tissues of …


Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki Dec 2014

Oligomerization Of The Sterile-2 G-Protein Coupled Receptor In Yeast Cells In The Presence And Absence Of Alpha-Factor Pheromone Using Fluorescence Spectroscopy And Forster Resonance Energy Transfer Analysis, Joel David Paprocki

Theses and Dissertations

G-protein-coupled receptors (GPCRs) are the largest family of receptors that respond to a wide variety of extracellular stimuli, including molecular ligands such as odorants, neurotransmitters, and hormones, as well as physical agents sigh as light and pressure. The stimulation event results in initiating conformational changes in the structure of the receptor, which further results in the release of the heterotrimeric G-protein; the latter has a variety of functions within signaling pathways in cellular biology. The GPCR explored in this investigation is the Sterile 2 α-factor receptor (Ste2), whose natural function is that of a yeast mating pheromone receptor. Its natural …


Interaction Of Rhizobium Sp. Strain Irbg74 With A Legume (Sesbania Cannabina) And A Cereal (Oryza Sativa), Shubhajit Mitra Dec 2014

Interaction Of Rhizobium Sp. Strain Irbg74 With A Legume (Sesbania Cannabina) And A Cereal (Oryza Sativa), Shubhajit Mitra

Theses and Dissertations

Rhizobium sp. IRBG74 (IRBG74) develops a classical nitrogen-fixing symbiosis with the legume Sesbania cannabina and also promotes the growth of rice (Oryza sativa), but not much is known about the rhizobial determinants important for these interactions. We hypothesize that Rhizobium sp. IRBG74 utilizes similar mechanisms to endophytically colonize both legume and cereal hosts. In this study, we analyzed the colonization of rice and S. cannabina using a strain of IRBG74 marked with β-glucuronidase (GUS) and Green Fluorescent Protein (GFP). IRBG74 infected both of the host plants through crack entry under submerged conditions, but showed root hair mediated infection under aerobic …


Gene Regulatory Pathways Driving Central Nervous System Regeneration In Zebrafish, Ishwariya Venkatesh Dec 2014

Gene Regulatory Pathways Driving Central Nervous System Regeneration In Zebrafish, Ishwariya Venkatesh

Theses and Dissertations

Damage to the central nervous system (CNS) circuitry of adult mammals results in permanent disability. In contrast, the ability to regenerate damaged CNS nerves and achieve functional recovery occurs naturally in fish. The ability of fish to successfully regrow damaged CNS nerves is in part a consequence of their ability to re-express key neuronal growth-associated genes/proteins in response to CNS injury. On such protein is Growth-Associated Protein-43 (Gap43), a protein which is highly enriched in axonal growth cones during CNS development and regeneration. Experiments conducted in mammals have demonstrated that ectopic expression of GAP-43 improves axonal re-growth after injury. Using …


Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean Dec 2014

Characterization Of A Putative Phospholipase D ´ Like Gene As A Lipid Signaling Modulator And Its Role In Salicylic Acid Mediated Defense Pathway In Nicotiana Tabacum, Phillip T. Dean

Electronic Theses and Dissertations

Plants are in a perpetual evolutionary arms race with a wide range of pathogens. Their sessile nature has led plants to evolve defense mechanisms that can quickly recognize a unique stressor and deploy a resistance tailored for a specific attack. The salicylic acid (SA) mediated defense pathway has been shown to be one of the major defense tactics plants can initiate to defend themselves against microbial pathogens. Following a pathogen attack high levels of methyl salicylate (MeSA) are produced that can be converted to SA by the enzyme salicylic acid binding protein 2 (SABP2). A yeast two-hybrid screening was performed …


The Lineage-Specific Evolution Of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation, Roderick Nigel Finn, François Chauvigné, Jón Baldur Hlidberg, Christopher P. Cutler, Joan Cerdà Nov 2014

The Lineage-Specific Evolution Of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation, Roderick Nigel Finn, François Chauvigné, Jón Baldur Hlidberg, Christopher P. Cutler, Joan Cerdà

Department of Biology Faculty Publications

A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of …


An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher Nov 2014

An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher

Biology Faculty Publications & Presentations

Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity …


Ribosomes Left In The Dust: Diverse Strategies For Peptide-Mediated Translation Stalling, Benjamin H. Hudson, Hani S. Zaher Nov 2014

Ribosomes Left In The Dust: Diverse Strategies For Peptide-Mediated Translation Stalling, Benjamin H. Hudson, Hani S. Zaher

Biology Faculty Publications & Presentations

In two recent papers, Arenz et al. (2014a) and Bischoff et al. (2014) provide structural insights into drug-induced, peptide-mediated stalling of the ribosome.


Characterization Of Juvenile Hormone Biosynthetic Enzymes In The Mosquito, Aedes Aegypti, Pratik Nyati Nov 2014

Characterization Of Juvenile Hormone Biosynthetic Enzymes In The Mosquito, Aedes Aegypti, Pratik Nyati

FIU Electronic Theses and Dissertations

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase).

The …


Cross-Disciplinary Sciences At Gettysburg College: Second Annual Poster Presentation, X-Sig Oct 2014

Cross-Disciplinary Sciences At Gettysburg College: Second Annual Poster Presentation, X-Sig

Student Publications

This booklet includes Biology student presentations by: Taylor Bury, Abigail Dworkin-Brodsky, Mary Pearce, Jasper Leavitt, Morgan Panzer, Ellen Petley, Kalli Qutub, Taylor Randell, Samantha Eck, Lana McDowell, Jenn Soroka, Celina Harris, Natalie Tanke, Alexandra Turano, and Caroline Garliss.

This booklet includes Biochemistry & Molecular Biology student presentations by: Matthew Dunworth, Andrew Sydenstricker, Brianne Tomko, Albert Vill, Warren Campbell, David Van Doren, Kevin Mrugalski, Stacey Heaver, Alecia Achimovich, and Katherine Boas.

This booklet includes Chemistry student presentations by: Kristen Baker, Laura Lee, Kathryn Fodale, Daniel Ruff, Michael Counihan, Ida DiMucci, Joshua Sgroi, Celina Harris, and Natalie Tanke.

This booklet include Health …


Host Cell Death In Legionella Pneumophila Pathogenesis And Immunity, Wenhan Zhu Oct 2014

Host Cell Death In Legionella Pneumophila Pathogenesis And Immunity, Wenhan Zhu

Open Access Dissertations

Legionella pneumophila is an intracellular pathogen that causes a severe, atypical pneumonia termed Legionnaires' disease. Upon entering the host cell, L. pneumophila resides in a membrane-bound vacuole, in which the bacterium evades lysosomal fusion and replicates. The establishment of the vacuole requires the Dot/Icm (Defect in organelle trafficking/ intracellular multiplication) transport system, which translocates a large number of substrates into host cells to re-orchestrate various cellular processes, such as intracellular trafficking, protein synthesis and host cell death pathways. Therefore, a key step in understanding the biology of Legionella is to dissect the mechanisms of action of the Dot/Icm substrates. By …


Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad Oct 2014

Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad

Open Access Dissertations

Individual differences in behavior can have potential fitness consequences and often reflect underlying genetic variation. My research focuses on three objectives related to individual level variation: 1) evaluating the innate behavioral variation within and between individuals, families, and progeny of different life-history types across time; 2) testing for differences in gene expression within the brain associated with this behavioral variation; and 3) using genetic polymorphisms to test for associations with ecotype, as well as population structure, in polymorphic populations. First, we evaluated the variation in a suite of ecologically relevant behaviors across time in juvenile progeny produced from crosses within …


Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni Oct 2014

Dietary Carbohydrates Influence The Structure And Function Of The Intestinal Alpha-Glucosidases, Mohammad Chegeni

Open Access Dissertations

As the primary products of starch digestion by pancreatic α-amylase, maltooligosaccharides (including maltose) are the main substrates for the α-glucosidases at the intestinal brush border. Here, maltose was shown to induce the formation of a higher molecular weight (HMW) sucrase-isomaltase (SI) species in Caco-2 cells that sorts more quickly to the enterocyte surface to act as a digestive enzyme. As this finding suggested a maltose sensing ability of small intestinal enterocytes, molecular mechanisms associated with the maturation and trafficking of HMW SI were further investigated. A pulse-chase experiment using [ 35S]-methionine revealed a higher rate of early trafficking and …


Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He Oct 2014

Towards A Paradigm Shift In The Modeling Of Soil Organic Carbon Decomposition For Earth System Models, Yujie He

Open Access Dissertations

Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Structural And Biochemical Studies Of The Carboxyltransferase Domain From Pyruvate Carboxylase, Adam David Lietzan Oct 2014

Structural And Biochemical Studies Of The Carboxyltransferase Domain From Pyruvate Carboxylase, Adam David Lietzan

Dissertations (1934 -)

Pyruvate carboxylase (PC; E.C. 6.4.1.1), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated, and then translocate to the carboxyltransferase (CT) domain where the carboxyl group is transferred from biotin to pyruvate. Kinetic analyses of PC have suggested that the spatially distinct reactions, which occur in the active sites of the BC and CT domains, are well coordinated. To gain insights into the molecular events necessary for coordinating catalysis in the CT domain, …


A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner Sep 2014

A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner

Dartmouth Scholarship

Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was …


Acute Effects Of Tio2 Nanomaterials On The Viability And Taxonomic Composition Of Aquatic Bacterial Communities Assessed Via High-Throughput Screening And Next Generation Sequencing, Binh Chu, Tiezheng Tong, Jean-François Gaillard, Kimberley A. Gray, John J. Kelly Aug 2014

Acute Effects Of Tio2 Nanomaterials On The Viability And Taxonomic Composition Of Aquatic Bacterial Communities Assessed Via High-Throughput Screening And Next Generation Sequencing, Binh Chu, Tiezheng Tong, Jean-François Gaillard, Kimberley A. Gray, John J. Kelly

Biology: Faculty Publications and Other Works

The nanotechnology industry is growing rapidly, leading to concerns about the potential ecological consequences of the release of engineered nanomaterials (ENMs) to the environment. One challenge of assessing the ecological risks of ENMs is the incredible diversity of ENMs currently available and the rapid pace at which new ENMs are being developed. High-throughput screening (HTS) is a popular approach to assessing ENM cytotoxicity that offers the opportunity to rapidly test in parallel a wide range of ENMs at multiple concentrations. However, current HTS approaches generally test one cell type at a time, which limits their ability to predict responses of …


The Chevrolet Cruze Luv 1.4 Engine, Gabriel Leiner Aug 2014

The Chevrolet Cruze Luv 1.4 Engine, Gabriel Leiner

Gabriel Leiner

In the future, this research suggests that designing highways and cars with features built into the structures of the roads themselves that implicitly influence typical drivers to achieve better fuel economy without making an active effort. These types of “intuitively” fuel efficient highways and cars are proposed, defined and modeled within the scope of this paper.


Determining The Binding Between Saga Subunits And Spliceosomal Components, Peyton J. Spreacker, Rachel L. Stegeman, Vikki M. Weake Aug 2014

Determining The Binding Between Saga Subunits And Spliceosomal Components, Peyton J. Spreacker, Rachel L. Stegeman, Vikki M. Weake

The Summer Undergraduate Research Fellowship (SURF) Symposium

Proper gene regulation is vital to the health and development of an organism. Determining the relationship between splicing, transcription, and chromatin structure is vital for understanding gene regulation as a whole. There have been previous studies linking these elements pairwise; however, no evidence exists for a direct link between all three. Recent data shows that splicing components of the U2 small nuclear ribonucleic protein (snRNP) co-purify with Spt-Ada-Gcn5-acetyltransferase (SAGA), a highly conserved transcriptional co-activator and chromatin modifier. We hypothesize that SAGA binds with splicing components through a multi-protein binding surface with certain core components based on preliminary yeast two-hybrid data. …


Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li Aug 2014

Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advances in tissue clearing techniques have allowed almost a ten-fold increase in the viewing depth of confocal microscopy. This allows for intact cellular structures to be rendered in 3D. However, viewing tissues to this depth is often limited to endogenous fluorescence as passive diffusion of antibodies via whole mount staining can take weeks. Our lab is developing a new method involving electrophoresis as a driving force that will promote active antibody binding deep into tissue, reducing the amount of time needed to stain for cellular structures. Due to the inherent charge within antibodies, they are able to be directionally forced …


Xrf Analyses Of Prehanford Orchards, Komal Rana Aug 2014

Xrf Analyses Of Prehanford Orchards, Komal Rana

STAR Program Research Presentations

Subsequent to 1943, the use of Lead Arsenic was banned from the Orchards standing on the Hanford site. This use of Lead Arsenate pesticide was popular among the orchard owners and was dispersed over the site in a myriad of ways. The presence of the traces of lead and arsenic are found today, more than half a century later. Using a portable X-ray florescence analyzer (XRF), the values of lead and arsenic are evaluated while determining the efficiency of the equipment itself. Samples from different decision sites were collected, with lead arsenic values in the low, high and medium range …


Characterizing Populations Of Non-Coding Rnas In Karenia Brevis At Different Times Of The Diel Cycle, Scott Boyd Anglin Aug 2014

Characterizing Populations Of Non-Coding Rnas In Karenia Brevis At Different Times Of The Diel Cycle, Scott Boyd Anglin

Master's Theses

Karenia brevis is a mixotrophic, marine dinoflagellate found in the Gulf of Mexico that generates periodic, if not annual, harmful algal blooms (also known as “red tides”) in certain coastal areas. In an effort to better understand the biology of this organism, a functional genomics project has been initiated. As part of that project, it has been determined that a significant number of natural antisense transcripts (NATs) as well as double-stranded RNA (dsRNA) molecules exist within the transcriptome of K. brevis. I hypothesize that the non-coding NATs, similar to microRNAs (miRNAs) in other organisms play a role in regulating …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.


Abcb11 Functions With B1 And B19 To Regulate Rootward Auxin Transport, Jesica Elyse Reemmer Jul 2014

Abcb11 Functions With B1 And B19 To Regulate Rootward Auxin Transport, Jesica Elyse Reemmer

Open Access Theses

Auxin transport is essential for the architecture and development of erect plants. In a network of transporters directing auxin flows, ATP-Binding Cassette (ABC) transporters are a ubiquitous family of proteins that actively transport important substrates, including auxins, across the plasma membrane. ABCB1 and ABCB19 have been shown to account for the majority of rootward auxin transport, but residual fluxes to the root tip in Arabidopsis b1b19 double mutants implies the involvement of at least one additional auxin transporter in this process. Of specific interest, the severe dwarfism seen in abcb1abcb19 is strikingly reminiscent of that seen in mutants defective in …


Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park Jul 2014

Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park

Open Access Theses

Reversible tyrosine phosphorylation plays an important role in signaling pathways that are essential for regulating cellular growth, differentiation and metabolism. Moreover, several human diseases such as diabetes, obesity and cancers are associated with the deregulation of protein tyrosine phosphatases (PTPs). Several studies provide evidence that PTPs not only contribute to cellular differentiation, but over-expression of these molecules also leads to transformation of non-transfomed cells as well. Based on these results, designing specific PTP inhibitors may ultimately function as potential therapeutic agents to treat various diseases including cancer, diabetes, and autoimmune diseases. EphA2 is a receptor tyrosine kinase which is hypo-phosphorylated …


[Accepted Article Manuscript Version (Postprint)] Auxin Input Pathway Disruptions Are Mitigated By Changes In Auxin Biosynthetic Gene Expression In Arabidopsis, Gretchen Spiess, Amanda Hausman, Peng Yu, Jerry Cohen, Rebekah Rampey, Bethany Zolman Jul 2014

[Accepted Article Manuscript Version (Postprint)] Auxin Input Pathway Disruptions Are Mitigated By Changes In Auxin Biosynthetic Gene Expression In Arabidopsis, Gretchen Spiess, Amanda Hausman, Peng Yu, Jerry Cohen, Rebekah Rampey, Bethany Zolman

Biology Department Faculty Works

Auxin is a phytohormone involved in cell elongation and division. Levels of indole-3-acetic acid (IAA), the primary auxin, are tightly regulated through biosynthesis, degradation, sequestration, and transport. IAA is sequestered in reversible processes by adding amino acids, polyol or simple alcohols, or sugars, forming IAA conjugates, or through a two-carbon elongation forming indole-3-butyric acid. These sequestered forms of IAA alter hormone activity. To gain a better understanding of how auxin homeostasis is maintained, we have generated Arabidopsis (Arabidopsis thaliana) mutants that combine disruptions in the pathways, converting IAA conjugates and indole-3-butyric acid to free IAA. These mutants show phenotypes indicative …


Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich Jun 2014

Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich

USF Tampa Graduate Theses and Dissertations

The accurate identification of taxa from mixed assemblages using genetic analysis remains an important field of molecular biology research. The common principle behind the development of numerous documented genetic detection technologies is to exploit specific nucleotide sequences inherent to each taxon. This body of work focuses on practical applications of real-time nucleic acid sequence-based amplification (RT-NASBA) in marine science, and is presented in four case studies. Each study represents novel work in the genetic identification of respective taxa of interest using RT-NASBA. Two case studies documented the development of an assay targeting mitochondrial 16S rRNA to discern legally salable grouper …


Anthropogenic Litter In Urban Freshwater Ecosystems: Distribution And Microbial Interactions, Timothy Hoellein, Miguel Rojas, Adam Pink, Joseph Gasior, John J. Kelly Jun 2014

Anthropogenic Litter In Urban Freshwater Ecosystems: Distribution And Microbial Interactions, Timothy Hoellein, Miguel Rojas, Adam Pink, Joseph Gasior, John J. Kelly

Biology: Faculty Publications and Other Works

Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously …


Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu Jun 2014

Characterizing The Response Of Multidrug-Resistant Klebsiella Pneumoniae Species To The Application Of A Phage Cocktail, Steven Liu

Symposium

Project Summary: The application of bacteriophages to treat bacterial infections is known as phage therapy, which takes advantage of bacteriophage’s natural ability to infect and lyse bacterial hosts. Phages have been shaped by billions of years of evolution to be highly specialized deliverers of bactericidal agents to the cytoplasm of their target bacteria. Ever since discovery of bacteriophages in 1915, phage therapy was recognized as a potentially powerful tool for eliminating bacterial infections. The effectiveness of phage therapy can be increased by creating a mixture of multiple phages to target a wider variety of bacterial strains. Furthermore, phage therapy has …