Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Radiation Dose Estimation By Completely Automated Interpretation Of The Dicentric Chromosome Assay, Peter Rogan, Yanxin Li, Ben Shirley, Ruth Wilkins, Farrah Norton, Joan Knoll Jan 2019

Radiation Dose Estimation By Completely Automated Interpretation Of The Dicentric Chromosome Assay, Peter Rogan, Yanxin Li, Ben Shirley, Ruth Wilkins, Farrah Norton, Joan Knoll

Biochemistry Publications

Accuracy of the automated dicentric chromosome (DC) assay relies on metaphase image selection. This study validates a software framework to find the best image selection models that mitigate inter-sample variability. Evaluation methods to determine model quality include the Poisson goodness-of-fit of DC distributions for each sample, residuals after calibration curve fitting and leave-one-out dose estimation errors. The process iteratively searches a pool of selection model candidates by modifying statistical and filter cut-offs to rank the best candidates according to their respective evaluation scores. Evaluation scores minimize the sum of squared errors relative to the actual radiation dose of the calibration …


Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu Jan 2019

Transcription Factor Binding Site Clusters Identify Target Genes With Similar Tissue-Wide Expression And Buffer Against Mutations., Peter Rogan, Ruipeng Lu

Biochemistry Publications

Background: The distribution and composition of cis-regulatory modules composed of transcription factor (TF) binding site (TFBS) clusters in promoters substantially determine gene expression patterns and TF targets. TF knockdown experiments have revealed that TF binding profiles and gene expression levels are correlated. We use TFBS features within accessible promoter intervals to predict genes with similar tissue-wide expression patterns and TF targets using Machine Learning (ML). Methods: Bray-Curtis Similarity was used to identify genes with correlated expression patterns across 53 tissues. TF targets from knockdown experiments were also analyzed by this approach to set up the ML framework. TFBSs were …