Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres May 2014

Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres

Dissertations & Theses (Open Access)

Pancreatic cancer is one of the most aggressive types of cancer, with poor prognosis that lacks effective diagnostic markers and therapies. It is expected that in 2014 the incidence and the mortality of pancreatic cancer in the United States will be 46,420 and 39,590 respectively. Diabetes and obesity are modifiable risk factors associated with accelerated pancreatic carcinogenesis and tumor progression, but the biological mechanisms are not completely understood. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating these epidemiologic phenomena. Our hypothesis is that obesity and diabetes mellitus type 2 (DM2) accelerate pancreatic cancer and …


Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira Apr 2014

Antimicrobial And Antiinsectan Phenolic Metabolites Of Dalea Searlsiae, Gil Belofsky, Mario Aronica, Eric Foss, Jane Diamond, Felipe Santana, Jacob Darley, Patrick F. Dowd, Christina M. Coleman, Daneel Ferreira

All Faculty Scholarship for the College of the Sciences

Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A–D (14) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 15, 7 …


Lipid Dependence In Ras-Driven Tumors, Darin Salloum Feb 2014

Lipid Dependence In Ras-Driven Tumors, Darin Salloum

Dissertations, Theses, and Capstone Projects

Over past decade, metabolic alterations in cancer cells have received a substantial amount of interest. It had been established that cancer cells undergo a significant amount of metabolic alterations, and some of these alterations are similar to those in normal highly proliferative cells. However, it is becoming more apparent that many of the metabolic alterations are specific to particular oncogenic signaling pathways. Although altered metabolic machinery makes cancer cells more efficient at promoting growth when nutrients are supplied at the sufficient amounts, the dependency of cancer cells on particular metabolic reprogramming deems cancer cells susceptible to disruptions within metabolic network. …


Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena Feb 2014

Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena

Dissertations, Theses, and Capstone Projects

Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide. In the absence of GF instructions, cells enter the quiescent G0 state. Despite fundamental differences between GF signaling and nutrient sensing, they both have been confusingly referred to as R and therefore by definition considered to be a singular event in G1. Autonomy from …


Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva Jan 2014

Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva

Dartmouth Scholarship

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys …