Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Bioinformatic Solutions To Complex Problems In Mass Spectrometry Based Analysis Of Biomolecules, Ryan M. Taylor Jul 2014

Bioinformatic Solutions To Complex Problems In Mass Spectrometry Based Analysis Of Biomolecules, Ryan M. Taylor

Theses and Dissertations

Biological research has benefitted greatly from the advent of omic methods. For many biomolecules, mass spectrometry (MS) methods are most widely employed due to the sensitivity which allows low quantities of sample and the speed which allows analysis of complex samples. Improvements in instrument and sample preparation techniques create opportunities for large scale experimentation. The complexity and volume of data produced by modern MS-omic instrumentation challenges biological interpretation, while the complexity of the instrumentation, sample noise, and complexity of data analysis present difficulties in maintaining and ensuring data quality, validity, and relevance. We present a corpus of tools which improves …


Targeted Proteomics Of Human Pluripotent Stem Cells, Kevin Gregory Kania Apr 2014

Targeted Proteomics Of Human Pluripotent Stem Cells, Kevin Gregory Kania

Electronic Thesis and Dissertation Repository

Human pluripotent stem cells (hPSCs) exhibit two unique characteristics: pluripotency and self-renewal. These properties are maintained by a series of complex signaling pathways, however, quantitative data for the respective proteins is lacking. Selected reaction monitoring (SRM) is a targeted, quantitative technique in mass spectrometry that is highly sensitive in peptide detection. In this thesis, an SRM protocol was developed in order to detect and quantify a defined set of proteins responsible for maintaining stem cell pluripotency. Two hESC differentiation protocols were validated for use as model systems within which to measure differential protein expression by SRM. SRM assays were generated …


Investigation Into The Cellular Actions Of Carnosine And C-Peptide, Emma H. Gardner Jan 2014

Investigation Into The Cellular Actions Of Carnosine And C-Peptide, Emma H. Gardner

Theses, Dissertations and Capstones

Carnosine is a dipeptide composed of beta-alanine and histidine found exclusively in long-lived animal tissues. The cellular action of carnosine is still under extensive investigation; however, it has been proposed to have a role as an anti-oxidant and oxygen free radical scavenger, a physiological buffer, a heavy metal chelator, and has been implicated as an anti-aging agent.2,4 Our lab has been studying the interaction between carnosine and heme by analyzing both the effect carnosine has on the glycation of the heme containing protein cytochrome c and the interaction of carnosine with free hemin. We have observed that the addition …


Monitoring Ligand-Induced Nucleic Acid Conformational Changes Using Ion Mobility Spectrometry-Mass Spectrometry, Bill Kenneth Redick Jan 2014

Monitoring Ligand-Induced Nucleic Acid Conformational Changes Using Ion Mobility Spectrometry-Mass Spectrometry, Bill Kenneth Redick

Legacy Theses & Dissertations (2009 - 2024)

Three-dimensional structures of biopolymers frequently dictate the biological role those molecules play. As such, investigation into structure of nucleic acids can provide important information pertaining to how those nucleic acids work. Many nucleic acid species, especially single-stranded RNA, fold into unique structures that allow them to function properly. Metals, and other cationic species, are often bound to the nucleic acid to make folding into the proper structure more favorable by neutralizing the negative charge on the nucleic acid imparted by the phosphate group. This investigation explores tertiary structure of nucleic acids that have been folded in the presence of ligands …