Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana Dec 2014

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects …


Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz Mar 2014

Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz

USF Tampa Graduate Theses and Dissertations

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first committed step of heme biosynthesis in animals, the condensation of glycine and succinyl-CoA yielding 5-aminolevuliante (ALA), CoA, and CO2. Murine erythroid-specific ALAS (mALAS2) variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. Transfection of HeLa cells with expression plasmids for mALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatment of HeLa cells expressing mALAS2 variants revealed …


Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva Jan 2014

Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva

Dartmouth Scholarship

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys …


Primary Microrna Processing Assay Reconstituted Using Recombinant Drosha And Dgcr8., Ian Barr, Feng Guo Jan 2014

Primary Microrna Processing Assay Reconstituted Using Recombinant Drosha And Dgcr8., Ian Barr, Feng Guo

Natural Sciences and Mathematics | Faculty Scholarship

In animals, the Microprocessor complex cleaves primary transcripts of microRNAs (pri-miRNAs) to produce precursor microRNAs in the nucleus. The core components of Microprocessor include the Drosha ribonuclease and its RNA-binding partner protein DiGeorge critical region 8 (DGCR8). DGCR8 has been shown to tightly bind an Fe(III) heme cofactor, which activates its pri-miRNA processing activity. Here we describe how to reconstitute pri-miRNA processing using recombinant human Drosha and DGCR8 proteins. In particular, we present the procedures for expressing and purifying DGCR8 as an Fe(III) heme-bound dimer, the most active form of this protein, and for estimating its heme content.