Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Amino Acid Racemase Enzyme Assays, Atanas D. Radkov, Luke A. Moe May 2014

Amino Acid Racemase Enzyme Assays, Atanas D. Radkov, Luke A. Moe

Plant and Soil Sciences Faculty Publications

Amino acid racemases are enzymes that invert the α-carbon stereochemistry of amino acids (AAs), interconverting amino acids between their L- and D-enantiomers in a reversible reaction. In bacteria, they are known to have catabolic physiological functions but are also involved in the synthesis of many D-AAs, including D-glutamate and D-alanine, which are necessary components of the peptidoglycan layer of the bacterial cell wall. As such, amino acid racemases represent significant targets for the development of bactericidal compounds. Amino acid racemases are also regarded by the biotechnological industry as important catalysts for the production of economically relevant D-AAs. Here, we provide …


Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips Jan 2014

Characterization Of Jabba, A Ricin-Resistant Mutant Of Leishmania Donovani, Megan Rhea Phillips

Theses and Dissertations--Molecular and Cellular Biochemistry

The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote’s life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg- mutants, one L. donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild-type but similar in size to LPG from wild-type from metacyclic (stationary) phase.

Structural analysis of …


Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee Jan 2014

Molecular Mechanism Of Human Mismatch Repair Initiation, Sanghee Lee

Theses and Dissertations--Nutritional Sciences

DNA mismatch repair (MMR) is a highly conserved pathway that maintains genomic stability primarily by correcting mismatches generated during DNA replication. MMR deficiency leads to microsatellite instability (MSI), which is a hallmark of HNPCC (Hereditary Nonpolyposis Colorectal Cancer). Human mismatch repair is initiated by MutSα, a heterodimer of MSH2 and MSH6 subunits. Mismatch binding by MutSα triggers a series of downstream MMR events including interacting and communicating with other MMR proteins. The ATPase domain of MutSα is situated in the C-termini of its both subunits, and ATP binding is required for dissociation of MutSα from a mismatch. In eukaryotic cells, …


The Role Of Angiotensinogen In Atherosclerosis And Obesity, Congqing Wu Jan 2014

The Role Of Angiotensinogen In Atherosclerosis And Obesity, Congqing Wu

Theses and Dissertations--Nutritional Sciences

Angiotensinogen is the only known precursor in the renin-angiotensin system, a hormonal system best known as an essential regulator of blood pressure and fluid homeostasis. Angiotensinogen is sequentially cleaved by renin and angiotensin- converting enzyme to generate angiotensin II. As the major effector peptide, angiotensin II mainly function through angiotensin type 1 receptor.

Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and more recently renin inhibitors are widely known as the 3 classic renin-angiotensin system inhibitory drugs against hypertension and atherosclerosis. Here, we developed an array of regents to explore the effects of angiotensinogen inhibition. First, we demonstrated that genetic deficiency of …


Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins Jan 2014

Structural Mechanisms Of Glucan Phosphatase Activity In Starch Metabolism, David A. Meekins

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch is a water-insoluble glucose biopolymer used as an energy cache in plants and is synthesized and degraded in a diurnal cycle. Reversible phosphorylation of starch granules regulates the solubility and, consequentially, the bioavailability of starch glucans to degradative enzymes. Glucan phosphatases release phosphate from starch glucans and their activity is essential to the proper diurnal metabolism of starch. Previously, the structural basis of glucan phosphatase activity was entirely unknown. The work in this dissertation outlines the structural mechanism of activity of two plant glucan phosphatases called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). The crystal structures of SEX4 …


Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker Jan 2014

Molecular Mechanisms Of Neuropilin-Ligand Binding, Matthew W. Parker

Theses and Dissertations--Molecular and Cellular Biochemistry

Neuropilin (Nrp) is an essential cell surface receptor with dual functionality in the cardiovascular and nervous systems. The first identified Nrp-ligand family was the Semaphorin-3 (Sema3) family of axon repulsion molecules. Subsequently, Nrp was found to serve as a receptor for the vascular endothelial growth factor (VEGF) family of pro-angiogenic cytokines. In addition to its physiological role, VEGF signaling via Nrp directly contributes to cancer stemness, growth, and metastasis. Thus, the Nrp/VEGF signaling axis is a promising anti-cancer therapeutic target. Interestingly, it has recently been shown that Sema3 and VEGF are functionally opposed to one another, with Sema3 possessing potent …


Leptin Resistance Induced Obesity And Diabetes Promote Neuropathological Changes In The Aging Brain, Thomas Platt Jan 2014

Leptin Resistance Induced Obesity And Diabetes Promote Neuropathological Changes In The Aging Brain, Thomas Platt

Theses and Dissertations--Molecular and Cellular Biochemistry

The aging brain is prone to the development of pathology and dementia. With a rapidly growing elderly population diagnoses of neurodegenerative diseases, such as Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease are on the rise. Additionally, diabetes and obesity are linked to an increased risk of dementia. The convergence of this increasingly aged population with the obesity and diabetes epidemic give rise to new concerns regarding the future of prevention and treatment of neurodegenerative diseases. Our lab has previously shown that leptin, an adipokine involved in signaling satiety to the hypothalamus, can modulate the generation of the amyloid …


Investigating Structure And Protein-Protein Interactions Of Key Post-Type Ii Pks Tailoring Enzymes, Theresa E. Downey Jan 2014

Investigating Structure And Protein-Protein Interactions Of Key Post-Type Ii Pks Tailoring Enzymes, Theresa E. Downey

Theses and Dissertations--Pharmacy

Type II polyketide synthase (PKS) produced natural products have proven to be an excellent source of pharmacologically relevant molecules due to their rich biological activities and chemical scaffolds. Type II-PKS manufactured polyketides share similar polycyclic aromatic backbones leaving their diversity to stem from various chemical additions and alterations facilitated by post-PKS tailoring enzymes. Evidence suggests that post-PKS tailoring enzymes form complexes in order to facilitate the highly orchestrated process of biosynthesis. Thus, protein-protein interactions between these enzymes must play crucial roles in their structures and functions. Despite the importance of these interactions little has been done to study them. In …


The Differences Between Iron And Iron-Substituted Manganese Superoxide Dismutase With Respect To Hydrogen Peroxide Treatment, Jianing Wang Jan 2014

The Differences Between Iron And Iron-Substituted Manganese Superoxide Dismutase With Respect To Hydrogen Peroxide Treatment, Jianing Wang

Theses and Dissertations--Chemistry

Iron-substituted manganese superoxide dismutase (Fe(Mn)SOD) was produced using an in vivo preparation method. It’s an inactive enzyme in catalyzing superoxide radical dismutation owing to the mis-incorporation of Fe in the active site evolved to use Mn. To investigate the possible toxicity of human Fe(Mn)SOD proposed by Yamakura, we studied the properties of Fe(Mn)SOD upon H2O2 treatment and compared to that of FeSOD. It’s found that the responses to H2O2 treatment were different, including the changes of optical spectra, variations of active site coordination and secondary structures. Fe3+ reduction was not observed in Fe(Mn)SOD …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …


Increase Of Basal Oxidative Stress Levels And Impairment Of Heme Oxygenase-1/Biliverdin Reductase Post-Translational Modification By The Defect Of Parkinson-Related Gene Of Pink1, Zhaoshu Zhang Jan 2014

Increase Of Basal Oxidative Stress Levels And Impairment Of Heme Oxygenase-1/Biliverdin Reductase Post-Translational Modification By The Defect Of Parkinson-Related Gene Of Pink1, Zhaoshu Zhang

Theses and Dissertations--Chemistry

Parkinson disease (PD) is the most common movement disorder and the second most common neurodegenerative disease. PINK1, PTEN-induced kinase 1, functions as a serine/threonine kinase as well as a protector of mitochondrial function. Mutations in PINK1 gene result in either mitochondria dysfunction or disruption of kinase signaling pathways involved in the pathogenesis of PD.

In this thesis, oxidative stress levels were examined in the brain of PINK1 knockout mice, and also how heme oxygenase-1 and biliverdin reductase are affected in brain of PINK1 knockout mice. In addition, posttranslational modifications are a way to control the behavior of proteins, so posttranslational …


Neuropilin In The Vascular System: Mechanistic Basis Of Angiogenesis, Hou-Fu Guo Jan 2014

Neuropilin In The Vascular System: Mechanistic Basis Of Angiogenesis, Hou-Fu Guo

Theses and Dissertations--Molecular and Cellular Biochemistry

The vascular system is critical for maintaining homeostasis in all vertebrates. Structural studies of Neuropilin (Nrp), an essential angiogenic receptor, have defined its role in regulating angiogenesis, the formation of new vessels from the existing vasculature. Utilizing biochemical and biophysical tools we describe the ability of Nrp to function as a co-receptor for the VEGFR receptor tyrosine kinase. Two families of Nrp-1 ligands, Vascular Endothelial Growth Factor A (VEGF-A) and Semaphorin3F (Sema3F), physically compete for binding to the Nrp-1 b1 domain, and have opposite roles. VEGF-A is a potent pro-angiogenic cytokine while Sema3F is an angiogenesis inhibitor. Using coupled structural …


Single-Molecule Analysis Of Alzheimer's Β-Peptide Oligomer Disassembly At Physiological Concentration, Chen Chen Jan 2014

Single-Molecule Analysis Of Alzheimer's Β-Peptide Oligomer Disassembly At Physiological Concentration, Chen Chen

Theses and Dissertations--Chemistry

The diffusible soluble oligomeric amyloid β-peptide (Aβ) has been identified as a toxic agent in Alzheimer’s disease that can cause synaptic dysfunction and memory loss, indicating its role as potential therapeutic targets for AD treatment. Recently an oligomer-specific sandwich biotin-avidin interaction based assay identified the Aβ oligomer dissociation potency of a series of dihydroxybenzoic acid (DHBA) isomers. Because the sandwich assay is an ensemble method providing limited size information, fluorescence correlation spectroscopy (FCS) was employed to provide single molecule resolution of the disassembly mechanism.

Using FCS coupled with atomic force microscopy, we investigated the size distribution of fluorescein labeled synthetic …


Stability Studies Of Membrane Proteins, Cui Ye Jan 2014

Stability Studies Of Membrane Proteins, Cui Ye

Theses and Dissertations--Chemistry

The World Health Organization has identified antimicrobial resistance as one of the top three threats to human health. Gram-negative bacteria such as Escherichia coli are intrinsically more resistant to antimicrobials. There are very few drugs either on the market or in the pharmaceutical pipeline targeting Gram-negative pathogens. Two mechanisms, the protection of the outer membrane and the active efflux by the multidrug transporters, play important roles in conferring multidrug resistance to Gram-negative bacteria. My work focuses on two main directions, each aligning with one of the known multidrug resistance mechanisms.

The first direction of my research is in the area …


Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell Jan 2014

Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell

Theses and Dissertations--Plant and Soil Sciences

Squalene synthase (SS) is an essential enzyme in eukaryotic systems responsible for an important branch point in isoprenoid metabolism that leads to sterol formation. The mechanistic complexity of SS has made it a difficult enzyme to study. The green alga Botryococcus braunii race B possesses several squalene synthase-like (SSL) enzymes that afford a unique opportunity to study the complex mechanism of triterpene biosynthesis. SSL-1 catalyzes presqualene diphosphate (PSPP) formation, which can either be converted to squalene by SSL-2 or botryococcene by SSL-3. A rationally designed mutant study of B. braunii squalene synthase (BbSS) and SSL-3 was conducted to understand structure-function …


The Role Of Surface Chemistry In The Toxicity Of Manufactured Cerium Dioxide Nanomaterials To Caenorhabditis Elegans, Emily Kay Oostveen Jan 2014

The Role Of Surface Chemistry In The Toxicity Of Manufactured Cerium Dioxide Nanomaterials To Caenorhabditis Elegans, Emily Kay Oostveen

Theses and Dissertations--Plant and Soil Sciences

Manufactured CeO2 nanomaterials (CeO2-MNMs) are used for a wide variety of applications including diesel fuel additives and chemical/mechanical planarization media. To test the effects of CeO2-MNM surface coating charge on to model organism Caenorhabditis elegans, we synthesized 4 nm CeO2 with cationic (DEAE-), anionic (CM-), and neutral (DEX) coatings. In L3 nematodes exposed for 24 hours, DEAE-CeO2 induced lethality at lower concentrations than CM- or DEX-CeO2. Feeding slightly decreased CeO2 toxicity, regardless of coating. In L2 nematodes exposed for 48 hours with feeding, DEAE-CeO2 caused lethality at the …