Open Access. Powered by Scholars. Published by Universities.®

Agriculture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Agriculture

Genetic Markers And Tree Properties Predicting Wood Biorefining Potential In Aspen (Populus Tremula) Bioenergy Feedstock, Sacha Escamez, Kathryn M. Robinson, Mikko Luomaranta, Madhavi Latha Gandla, Niklas Mähler, Zakiya Yassin, Thomas Grahn, Gerhard Scheepers, Lars-Göran Stener, Stefan Jansson, Leif J. Jönsson, Nathaniel R. Street, Hannele Tuominen Apr 2023

Genetic Markers And Tree Properties Predicting Wood Biorefining Potential In Aspen (Populus Tremula) Bioenergy Feedstock, Sacha Escamez, Kathryn M. Robinson, Mikko Luomaranta, Madhavi Latha Gandla, Niklas Mähler, Zakiya Yassin, Thomas Grahn, Gerhard Scheepers, Lars-Göran Stener, Stefan Jansson, Leif J. Jönsson, Nathaniel R. Street, Hannele Tuominen

Aspen Bibliography

Background Wood represents the majority of the biomass on land and constitutes a renewable source of biofuels and other bioproducts. However, wood is recalcitrant to bioconversion, raising a need for feedstock improvement in production of, for instance, biofuels. We investigated the properties of wood that affect bioconversion, as well as the underlying genetics, to help identify superior tree feedstocks for biorefining.

Results We recorded 65 wood-related and growth traits in a population of 113 natural aspen genotypes from Sweden (https://doi.org/10.5061/dryad.gtht76hrd). These traits included three growth and field performance traits, 20 traits for wood chemical composition, 17 traits for wood anatomy …


Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath Jan 2014

Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath

Department of Agronomy and Horticulture: Faculty Publications

Switchgrass (Panicum virgatum L) is a perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution, and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season.Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter …