Open Access. Powered by Scholars. Published by Universities.®

Agriculture Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics

Series

2014

Panicum virgatum

Articles 1 - 2 of 2

Full-Text Articles in Agriculture

Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath Jan 2014

Global Changes In Mineral Transporters In Tetraploid Switchgrasses (Panicum Virgatum L.), Nathan A. Palmer, Aaron J. Saathoff, Brian M. Waters, Teresa Donze, Tiffany M. Heng-Moss, Paul Twigg, Christian M. Tobias, Gautam Sarath

Department of Agronomy and Horticulture: Faculty Publications

Switchgrass (Panicum virgatum L) is a perennial, C4 grass with great potential as a biofuel crop. An in-depth understanding of the mechanisms that control mineral uptake, distribution, and remobilization will benefit sustainable production. Nutrients are mobilized from aerial portions to below-ground crowns and rhizomes as a natural accompaniment to above-ground senescence post seed-set. Mineral uptake and remobilization is dependent on transporters, however, little if any information is available about the specific transporters that are needed and how their relative expression changes over a growing season.Using well-defined classes of mineral transporters, we identified 520 genes belonging to 40 different transporter …


Switchgrass (Panicum Virgatum L) Flag Leaf Transcriptomes Reveal Molecular Signatures Of Leaf Development, Senescence, And Mineral Dynamics, Nathan A. Palmer, Teresa Donze-Reiner, David Horvath, Tiffany Heng-Moss, Brian M. Waters, Christian M. Tobias, Gautam Sarath Jan 2014

Switchgrass (Panicum Virgatum L) Flag Leaf Transcriptomes Reveal Molecular Signatures Of Leaf Development, Senescence, And Mineral Dynamics, Nathan A. Palmer, Teresa Donze-Reiner, David Horvath, Tiffany Heng-Moss, Brian M. Waters, Christian M. Tobias, Gautam Sarath

Department of Agronomy and Horticulture: Faculty Publications

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had …