Open Access. Powered by Scholars. Published by Universities.®

Agriculture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Agriculture

Field Research Report: Results From The Enreec Vri Field For The 2021, 2022, And 2023 Crop Seasons, Derek M. Heeren, Ali T. Mohammed, Eric Wilkening, Christopher M. U. Neale, Alan L. Boldt, Ankit Chandra, Precious Nneka Amori, Ivo Z. Goncalves, Yeyin Shi, Guillermo R. Balboa Mar 2024

Field Research Report: Results From The Enreec Vri Field For The 2021, 2022, And 2023 Crop Seasons, Derek M. Heeren, Ali T. Mohammed, Eric Wilkening, Christopher M. U. Neale, Alan L. Boldt, Ankit Chandra, Precious Nneka Amori, Ivo Z. Goncalves, Yeyin Shi, Guillermo R. Balboa

Department of Biological Systems Engineering: Conference Presentations and White Papers

Long-term irrigation management research has been conducted from 2014 to 2023 for corn and soybean at the Eastern Nebraska Research, Extension, and Education Center (ENREEC) Variable Rate Irrigation (VRI) Field located in subhumid east-central Nebraska (in the Lower Platte North Natural Resources District). The objective of this report was to present the overall results from the VRI Field for 2021 to 2023. Across the three growing seasons, there were the following irrigation treatments: Best Management Practice (BMP), 50% BMP, 125% BMP, rainfed, Spatial ET Modeling Interface (SETMI), SDD1, SDD2, machine-learning-based Cyber-Physical System (CPS), a student team recommended rate, and industry …


Cover Crops Have Negligible Impact On Soil Water In Nebraska Maize–Soybean Rotation, J. Burdette Barker, Derek M. Heeren, Katja Koehler-Cole, Charles Shapiro, Humberto Blanco-Canqui, Roger W. Elmore, Christopher A. Proctor, Suat Irmak, Charles A. Francis, Tim M. Shaver, Ali T. Mohammed Aug 2018

Cover Crops Have Negligible Impact On Soil Water In Nebraska Maize–Soybean Rotation, J. Burdette Barker, Derek M. Heeren, Katja Koehler-Cole, Charles Shapiro, Humberto Blanco-Canqui, Roger W. Elmore, Christopher A. Proctor, Suat Irmak, Charles A. Francis, Tim M. Shaver, Ali T. Mohammed

Department of Biological Systems Engineering: Papers and Publications

One perceived cost of integrating winter cover cropping in maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotation systems is the potential negative impact on soil water storage available for primary crop production. The objective of this 3-year study was to evaluate the effects of winter cover crops on soil water storage and cover crop biomass production following no-till maize and soybean rotations. Locations were near Brule (west-central), Clay Center (south-central), Concord (northeast), and Mead (east-central), Nebraska, United States. Treatments included crop residue only (no cover crop) and a multi-species cover crop mix, both broadcast-seeded before …


Uncertainty In Simulating Gross Primary Production Of Cropland Ecosystem From Satellite-Based Models, Wenping Yuan, Wenwen Cai, Anthony L. Nguy-Robertson, Huajun Fang, Andrew E. Suyker, Yang Chen, Wenjie Dong, Shuguang Liu, Haicheng Zhang Apr 2015

Uncertainty In Simulating Gross Primary Production Of Cropland Ecosystem From Satellite-Based Models, Wenping Yuan, Wenwen Cai, Anthony L. Nguy-Robertson, Huajun Fang, Andrew E. Suyker, Yang Chen, Wenjie Dong, Shuguang Liu, Haicheng Zhang

School of Natural Resources: Faculty Publications

Accurate estimates of gross primary production (GPP) for croplands are needed to assess carbon cycle and crop yield. Satellite-based models have been developed to monitor spatial and temporal GPP patterns. However, there are still large uncertainties in estimating cropland GPP. This study compares three light use efficiency (LUE) models (MODIS-GPP, EC-LUE, and VPM) with eddy-covariance measurements at three adjacent AmeriFlux crop sites located near Mead, Nebraska, USA. These sites have different croprotation systems (continuous maize vs. maize and soybean rotated annually) and water management practices (irrigation vs. rainfed). The results reveal several major uncertainties in estimating GPP which need to …


The Amazon Frontier Of Land-Use Change: Croplands And Consequences For Greenhouse Gas Emissions, Gillian L. Galford, Jerry Melillo, John F. Mustard, Carlos E.P. Cerri, Carlos C. Cerri Oct 2010

The Amazon Frontier Of Land-Use Change: Croplands And Consequences For Greenhouse Gas Emissions, Gillian L. Galford, Jerry Melillo, John F. Mustard, Carlos E.P. Cerri, Carlos C. Cerri

Rubenstein School of Environment and Natural Resources Faculty Publications

The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. …


Coupling Of Carbon Dioxide And Water Vapor Exchanges Of Irrigated And Rainfed Maize–Soybean Cropping Systems And Water Productivity, Andrew E. Suyker, Shashi B. Verma Jan 2010

Coupling Of Carbon Dioxide And Water Vapor Exchanges Of Irrigated And Rainfed Maize–Soybean Cropping Systems And Water Productivity, Andrew E. Suyker, Shashi B. Verma

School of Natural Resources: Faculty Publications

Continuous measurements of CO2 and water vapor exchanges made in three cropping systems (irrigated continuous maize, irrigated maize–soybean rotation, and rainfed maize–soybean rotation) in eastern Nebraska, USA during 6 years are discussed. Close coupling between seasonal distributions of gross primary production (GPP) and evapotranspiration (ET) were observed in each growing season. Mean growing season totals of GPP in irrigated maize and soybean were 1738 ± 114 and 996 ± 69 g C m−2, respectively (±standard deviation). Corresponding mean values of growing season ET totals were 545 ± 27 and 454 ± 23 mm, respectively. Irrigation affected GPP …