Open Access. Powered by Scholars. Published by Universities.®

Agriculture Commons

Open Access. Powered by Scholars. Published by Universities.®

Agronomy and Crop Sciences

Series

2018

Environment

Articles 1 - 2 of 2

Full-Text Articles in Agriculture

Tetracycline And Sulfonamide Antibiotic Resistance Genes In Soils From Nebraska Organic Farming Operations, Marylynn Cadena, Lisa M. Durso, Daniel N. Miller, Heidi M. Waldrip, B. L. Castleberry, Rhae A. Drijber, Charles S. Wortmann Jan 2018

Tetracycline And Sulfonamide Antibiotic Resistance Genes In Soils From Nebraska Organic Farming Operations, Marylynn Cadena, Lisa M. Durso, Daniel N. Miller, Heidi M. Waldrip, B. L. Castleberry, Rhae A. Drijber, Charles S. Wortmann

Department of Agronomy and Horticulture: Faculty Publications

There is widespread agreement that agricultural antibiotic resistance should be reduced, however, it is unclear from the available literature what an appropriate target for reduction would be. Organic farms provide a unique opportunity to disentangle questions of agricultural antibiotic drug use from questions of antibiotic resistance in the soil. In this study, soil was collected from 12 certified organic farms in Nebraska, evaluated for the presence of tetracycline and sulfonamide resistance genes (n = 15 targets), and correlated to soil physical, chemical, and biological parameters. Tetracycline and sulfonamide antibiotic resistance genes (ARGs) were found in soils from all 12 …


Maize Genomes To Fields: 2014 And 2015 Field Season Genotype, Phenotype, Environment, And Inbred Ear Image Datasets, Naser Alkhalifah, Darwin A. Campbell, Celeste M. Falcon, Jack M. Gardiner, Nathan D. Miller, Maria Cinta Romay, Ramona Walls, Renee Walton, Cheng-Ting Yeh, Martin Bohn, Jessica Bubert, Edward S. Buckler, Ignacio Ciampitti, Sherry Flint-Garcia, Michael A. Gore, Christopher Graham, Candice Hirsch, James B. Holland, David Hooker, Shawn Kaeppler, Joseph Knoll, Nick Lauter, Elizabeth C. Lee, Aaron Lorenz, Jonathan P. Lynch, Stephen P. Moose, Seth C. Murray, Rebecca Nelson, Torbert Rocheford, Oscar Rodriguez, James C. Schnable, Brian Scully, Margaret Smith, Nathan Springer, Peter Thomison, Mitchell Tuinstra, Randall J. Wisser, Wenwei Xu, David Ertl, Patrick S. Schnable, Natalia De Leon, Edgar P. Spalding, Jode Edwards, Carolyn J. Lawrence-Dill Jan 2018

Maize Genomes To Fields: 2014 And 2015 Field Season Genotype, Phenotype, Environment, And Inbred Ear Image Datasets, Naser Alkhalifah, Darwin A. Campbell, Celeste M. Falcon, Jack M. Gardiner, Nathan D. Miller, Maria Cinta Romay, Ramona Walls, Renee Walton, Cheng-Ting Yeh, Martin Bohn, Jessica Bubert, Edward S. Buckler, Ignacio Ciampitti, Sherry Flint-Garcia, Michael A. Gore, Christopher Graham, Candice Hirsch, James B. Holland, David Hooker, Shawn Kaeppler, Joseph Knoll, Nick Lauter, Elizabeth C. Lee, Aaron Lorenz, Jonathan P. Lynch, Stephen P. Moose, Seth C. Murray, Rebecca Nelson, Torbert Rocheford, Oscar Rodriguez, James C. Schnable, Brian Scully, Margaret Smith, Nathan Springer, Peter Thomison, Mitchell Tuinstra, Randall J. Wisser, Wenwei Xu, David Ertl, Patrick S. Schnable, Natalia De Leon, Edgar P. Spalding, Jode Edwards, Carolyn J. Lawrence-Dill

Department of Agronomy and Horticulture: Faculty Publications

Objectives: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F’s genotype by environment project has released 2014 and 2015 datasets to the public, with …