Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Dartmouth College

Series

Ultrastructure

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter Jan 2012

Heterogeneity In Mitochondrial Morphology And Membrane Potential Is Independent Of The Nuclear Division Cycle In Multinucleate Fungal Cells, John P. Gerstenberger, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

In the multinucleate filamentous fungus Ashbya gossypii, nuclei divide asynchronously in a common cytoplasm. We hypothesize that the division cycle machinery has a limited zone of influence in the cytoplasm to promote nuclear autonomy. Mitochondria in cultured mammalian cells undergo cell cycle-specific changes in morphology and membrane potential and therefore can serve as a reporter of the cell cycle state of the cytoplasm. To evaluate if the cell cycle state of nuclei in A. gossypii can influ


The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole Aug 2007

The Yeast Integral Membrane Protein Apq12 Potentially Links Membrane Dynamics To Assembly Of Nuclear Pore Complexes, John J. Scarcelli, Christin A. Hodge, Charles N. Cole

Dartmouth Scholarship

Although the structure and function of components of the nuclear pore complex (NPC) have been the focus of many studies, relatively little is known about NPC biogenesis. In this study, we report that Apq12 is required for efficient NPC biogenesis in Saccharomyces cerevisiae. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum. Cells lacking Apq12 are cold sensitive for growth, and a subset of their nucleoporins (Nups), those that are primarily components of the cytoplasmic fibrils of the NPC, mislocalize to the cytoplasm. APQ12 deletion also causes defects in NE morphology. In the absence of …


Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel Jul 2007

Regulation Of Meiotic Cohesion And Chromosome Core Morphogenesis During Pachytene In Drosophila Oocytes, Radhika S. Khetani, Sharon E. Bickel

Dartmouth Scholarship

During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte …


An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph May 2006

An Essential Role For Endocytosis Of Rhodopsin Through Interaction Of Visual Arrestin With The Ap-2 Adaptor, Nicholas R. Orem, Luxi Xia, Patrick J. Dolph

Dartmouth Scholarship

Previously, we have identified a class of retinal degeneration mutants in Drosophila in which the normally transient interaction between arrestin2 (Arr2) and rhodopsin is stabilized and the complexes are rapidly internalized into the cell body by receptor-mediated endocytosis. The accumulation of protein complexes in the cytoplasm eventually results in photoreceptor cell death. We now show that the endocytic adapter protein AP-2 is essential for rhodopsin endocytosis through an Arr2-AP-2beta interaction, and mutations in Arr2 that disrupt its interaction with the beta subunit of AP-2 prevent endocytosis-induced retinal degeneration. We further demonstrate that if the interaction between Arr2 and AP-2 is …


A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe Oct 2003

A Role For Yip1p In Copii Vesicle Biogenesis, Matthew Heidtman, Catherine Z. Chen, Ruth N. Collins, Charles Barlowe

Dartmouth Scholarship

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes …


Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …


Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith Jan 2003

Asymmetry Of The Central Apparatus Defines The Location Of Active Microtubule Sliding In Chlamydomonas Flagella, Matthew J. Wargo, Elizabeth F. Smith

Dartmouth Scholarship

Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then …


Binding Of Matrix Attachment Regions To Lamin Polymers Involves Single-Stranded Regions And The Minor Groove., M. E. Eva Ludérus, Jan L. Den Blaauwen, Oncko J. De Smit, Duane A. Compton, Roel Van Driel Jan 1994

Binding Of Matrix Attachment Regions To Lamin Polymers Involves Single-Stranded Regions And The Minor Groove., M. E. Eva Ludérus, Jan L. Den Blaauwen, Oncko J. De Smit, Duane A. Compton, Roel Van Driel

Dartmouth Scholarship

Chromatin in eukaryotic nuclei is thought to be partitioned into functional loop domains that are generated by the binding of defined DNA sequences, named MARs (matrix attachment regions), to the nuclear matrix. We have previously identified B-type lamins as MAR-binding matrix components (M. E. E. Ludérus, A. de Graaf, E. Mattia, J. L. den Blaauwen, M. A. Grande, L. de Jong, and R. van Driel, Cell 70:949-959, 1992). Here we show that A-type lamins and the structurally related proteins desmin and NuMA also specifically bind MARs in vitro. We studied the interaction between MARs and lamin polymers in molecular detail …


Atp-Dependent Formation And Motility Of Aster-Like Structures With Isolated Calf Brain Microtubule Proteins., Richard C. Weisenberg, Robert D. Allen, Shinya Inoue Mar 1986

Atp-Dependent Formation And Motility Of Aster-Like Structures With Isolated Calf Brain Microtubule Proteins., Richard C. Weisenberg, Robert D. Allen, Shinya Inoue

Dartmouth Scholarship

Microtubule proteins isolated from calf brain will undergo gelation-contraction in the presence of ATP. We have now examined this process by video-enhanced contrast microscopy. After ATP addition to steady-state microtubules, slow (1-5 micron/min), linear movements of particles and microtubules toward aggregation centers occur. The resulting structures resemble mitotic spindle asters. During the time when gel contraction occurs, asters move (at 1-5 micron/min) toward other nearby asters. This is accompanied by the apparent shortening of the microtubules running between the asters. This is the first example of isolated microtubules undergoing a process that has similarities to half-spindle shortening during anaphase A. …